
Research Article Vol. 28, No. 16 / 3 August 2020 / Optics Express 24298

High dynamic range head-up displays
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Abstract: We demonstrate a full-color high dynamic range head-up display (HUD) based on a
polarization selective optical combiner, which is a three-layer cholesteric liquid crystal (CLC)
film. Such a CLC film has three reflection bands corresponding to the three primary colors. A
key component in our HUD system is a polarization modulation layer (PML) consisting of a
twisted-nematic LC polarization rotator sandwiched by two quarter-wave plates. This spatially
switchable PML generates opposite polarization states for the displayed image and its background
area. Thus, this optical combiner reflects the displayed image to the observer and transmits
the background noise, making the black state darker. Furthermore, by matching the reflection
spectra of the optical combiner with the colors of the display panel, the bright state gets brighter.
Therefore, both bright state and dark state are improved simultaneously. Our experimental
results show that the dark state of the new HUD is lowered by 3x and bright state is boosted by
2.5x. By applying antireflection coating to the optical components and optimizing the degree of
polarization, our simulation results indicate that the dynamic range can be improved by ∼50x
(17 dB). Potential applications of the proposed HUDs for improving the driver’s safety are
foreseeable.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The concept of the head-up display (HUD) was first demonstrated in aircrafts as early as 1960s
[1]. It took more than two decades of intensive development efforts to penetrate to the automobile
industry [2], enabling the driver to focus on the road conditions. Recently, HUD has been widely
implemented in vehicles as an advanced driver assistance system [3,4].

The optical structure of a commercial HUD usually consists of three parts: light engine, folding
optics, and optical combiner (OC) [5,6]. At present, many HUDs use liquid crystal display
(LCD) as the light engine because of its low cost, good temperature stability, and long lifetime.
However, the major shortcoming of LCD is its relatively low contrast ratio (CR≈ 2000:1) due to
the depolarization effects of the employed LC and color filters, which leads to a noticeable light
leakage in the dark state [7]. As a result, the image of the LCD looks like a transparent postcard
emerging in front of the driver. Figure 1(a) shows a photo of the “postcard effect” [8] from a
commercial aftermarket HUD. This effect may distract the driver’s attention and raise safety
concerns. As for the bright state, the strong ambient light and reflection of the display panel
could washout the displayed information. Many States in the USA set specific regulations that
the ambient light transmittance should be higher than 70%, which means the optical combiner
reflectance of the display light toward the driver is below 30%. An inadequate brightness of the
perceived image would lead to a low ambient contrast ratio (ACR); that means the image could
be washed out by the environment light [9] as Fig. 1(b) shows. To provide the driver with fast
recognition, ACR should be larger than 10:1. If ACR < 3:1, the driver can hardly recognize the
displayed information and it raises safety alert [10]. Therefore, both dark state and bright state
of the HUDs should be improved. In other words, HUDs with high dynamic range (HDR) are
highly desirable.
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Fig. 1. Problems in current commercial HUD: (a) postcard effect and (b) image washout.

To achieve HDR, we can enhance the HUD performance from light engine or from optical
combiner. Currently, digital light processing (DLP) and laser scanned micro-electromechanical
systems (MEMS) are two strong contenders for the image generation unit of HUD [11–13].
Digital micromirror device (DMD) is a critical component in the DLP-based HUD system.
A DMD consists of millions of micro-mirrors that can be switched individually between two
states by the applied voltage. To generate a bright image, the incident light is reflected by the
micro-mirror toward the optical system. Although DMD is a bistable device, grayscale can be
generated by the pulse width modulation method. To obtain dark state, the incident light is
reflected off the projection lens and absorbed by the surrounding black paint. On the other hand,
in the laser scanning MEMS projection system, the image content is written by the RGB lasers,
which scan over the screen through a two-dimensional MEMS mirror. Both approaches can
provide HDR images for HUD applications, however, the complicated driving system and high
cost remain to be overcome before widespread applications can take place.
Other potential image generation units like OLED, mini-LED backlit LCD, and micro-LED

have their pros and cons. OLED exhibits an excellent dark state and thin form factor, but the
high temperature inside a vehicle and high peak luminance (>2000 nits) requirement for HUDs
could lead to serious burn-in and degraded lifetime [14]. Mini-LED backlit LCD can achieve
a reasonably high luminance and long lifetime, but the halo effect could distract the driver’s
attention. The halo effect can be suppressed by using more mini-LEDs and local dimming zones
[15], but to drive thousands of mini-LEDs the IC cost is relatively high, and the driving method
is complex. Micro-LED would be an attractive solution, but the manufacturing yield, defect
repairs, and cost issue remain to be overcome [16,17].

Modifying the optical combiner is another promising approach to enhance the dynamic range.
Here we define T as the ambient light transmittance through the optical combiner, and R as the
reflectance of the optical combiner to the display light. For an ideal optical combiner, it should
transmit all the ambient light and reflect all the display light, i.e. R+ T = 200%. In a conventional
optical combiner, the transmittance of ambient light and the reflectance of display light sums
up to 100% (R+T = 100%), assuming the absorption is negligible. However, if the bright state
of the HUD is improved, and the transmittance of the optical combiner keeps higher than 70%,
then R+ T could exceed 100%. To realize this special advantage, the display light should exhibit
different characteristics from the ambient light.

The first difference is wavelength spectrum. The spectrum of ambient light is usually broadband
and continuous, similar to D65 (white light), in the visible spectrum. However, the display light
usually consists of three primary colors (red, green, and blue, RGB). Based on this difference,
holographic film would be an attractive candidate for the optical combiner because of its narrow
and sharp reflection band [18]. Thus, if the OC’s reflection bands match the display’s primary
colors, then more light from the display panel will be reflected toward the observer. In the
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meantime, more ambient light will transmit through the OC because it only reflects the RGB
bands and transmits the remaining visible light. With the help of holographic film, the value of
R+T can reach as high as 170% [19], but only for monochromatic displays.

The second difference is the polarization state. The ambient light is usually unpolarized or
with a low degree of polarization. However, the display panel (LCD or OLED) emits polarized
light [20]. Based on this difference, a polarization selective OC has been designed for HUD
[21,22] to introduce different reflectance for display light and ambient light. In contrast, a
conventional OC exhibits same transmittance (e.g. 70%) for the randomly polarized ambient
light and left-handed circularly polarized (LCP) display light, as Fig. 2(a) shows. In this scenario,
R+ T ≈ 100%. If the polarization selective OC reflects LCP by 60% but transmits right-handed
circularly polarized (RCP) by 100%, as Fig. 2(b) depicts, then the reflectance of display light
(R=60%) can be improved by 2x in comparison with conventional optical combiner (R=30%).
Under such conditions, R=60% and T=70%, and R+T ≈ 130%.

Fig. 2. Ambient light transmittance and display light reflectance of (a) conventional OC
and (b) polarization selective OC based on LCP and RCP.

In this paper, we demonstrate an HDR HUD system based on a polarization selective OC,
which consists of three cholesteric liquid crystal (CLC) films [23,24]. Such a CLC film reflects
only one circular polarization in the desired RGB bands. Moreover, a polarization modulation
layer (PML) is employed to modulate the polarization state of each pixel on the LCD, such that
the polarization states of dark pixels and bright pixels can be distinguished. The light emitted
from bright pixels is reflected by the OC, while that from dark pixels is transmitted. With this
design, both bright and dark states of the HUD are improved. With the help of polarization
selective OC, the ambient light transmittance remains relatively high.

2. System configuration

Figure 3(a) shows the system configuration. Two quarter-wave plates (QWP) and a 90° twisted
nematic (TN) panel are placed between the projection lens and display to serve as the PML. The
evolution of polarization states from the display to the projection lens is illustrated in Fig. 3(b).
Let us assume the display panel emits LCP light, the first QWP converts the LCP light to linear
polarization. The TN panel serves as a switchable polarization rotator [25,26]. For those TN
pixels in the voltage-off state, they rotate the incoming linearly polarized light by 90°, as shown
in the right part of Fig. 3(b). Then, the second QWP changes the linearly polarized light to RCP,
which in turn will transmit through our CLC based OC. For those TN pixels with a high voltage,
the LC directors will be reoriented along the direction of light propagation. As a result, the
incoming linearly polarized light experiences no phase retardation effect and will not be affected,
as shown in the left part of Fig. 3(b), so that the outgoing light will be LCP.

To illustrate the basic operation principle of our system, in experiment we use an iPhone 8 as
the display panel and a 7” TN panel (resolution 800 × 480 but without polarizers) sandwiched
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Fig. 3. (a) Schematic diagram of the HUD system, and (b) polarization state evolution in
the polarization modulation layer. Here, we assume the display panel emits LCP light, while
the OC reflects LCP and transmits RCP.

between two QWPs as the PML, as Fig. 3(a) depicts. For convenience of discussion, let us assume
the display light from iPhone 8 is LCP. First, we use iPhone 8 to generate colored UCF patterns.
Then, we apply a voltage (≈5V) to those corresponding TN pixels to retain the polarization state
(LCP) of UCF as the left part of Fig. 3(b) indicates. The remaining pixels of the TN panel are at
V=0 so that the outgoing light passing through this region will be RCP. Due to the polarization
selectivity of our optical combiner, the light with UCF characters (LCP) will be reflected toward
the observer’s eye, as Fig. 3(a) shows. While the remaining light with RCP will pass through the
OC, making the black area even darker.

3. Experiment

3.1. CLC optical combiner

In the proposed system, the main component is the polarization selective optical combiner, which
is a three-layer CLC film. Such a CLC film exhibits helical structure; it reflects the circularly
polarized light with the same handedness, (e.g., LCP), but transmits the opposite polarization
(RCP) [27]. The central wavelength (λo) of the Bragg reflection is jointly determined by the CLC
helical pitch length (p) and average refractive index (n) of the employed LC material as λo =p·n
[27].
In experiment, we used RM257 (from LC Matter) as LC monomer, whose average refractive

index is 1.508 and birefringence is 0.152, 0.161, 0.176 at 630 nm, 530 nm, 450 nm, respectively.
S5011 (from HCCH) was chiral dopant, which made the LC directors rotating along the helical
axis. By adjusting the concentration of chiral dopant, the CLC pitch length can be changed, and
the central wavelength of Bragg reflection can be tailored to a desired value. The CLC film has
three layers, and each layer has the central wavelength locates at red, green, and blue spectrum,
respectively. In our design, the helical pitch length for the RGB layers is around 417 nm, 351 nm
and 298 nm, respectively, and the thickness of each layer is restricted to ∼5 helical pitches by
controlling the ratio of solute and solvent in the CLC solution, and the speed of spin-coating,
so that the reflection peak will not be too high (∼80%) [27] in order to let 70% ambient light
transmit through. The blue and green CLC layers were spin-coated on two separate 2-inch glass
substrates, and the red one was spin-coated on top of the blue one as Fig. 4(a) shows. Then the
two substrates were laminated together to form a three-layer CLC polymer film, which was robust
and thermoresistant. The reason we fabricated blue and red CLC layers on the same substrate
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is explained as follows. If we fabricated two layers with close central wavelength together (e.g.
blue and green, or green and red), then the two reflection bands will merge into one, because
RM257 has a relatively high birefringence and the reflection band is broad. Since the OC is
inclined at around 45°, the reflection spectrum with LCP input at 45° was measured and results
plotted in Fig. 4(b) where three reflection bands at RGB primary wavelengths can be observed.
The fabricated OC also shows a reasonable transmission spectrum with an unpolarized light
input at 45°, as shown in Fig. 4(c). The spectrums were measured by a white light spectrometer
(Ocean Optics HG2000CG) with a halogen lamp.

Fig. 4. (a) Three-layer CLC film structure, (b) measured reflection spectrum (normalized to
a glass substrate) of the green CLC layer, blue & red CLC layers, and three-layer RGB CLC
film with LCP input, and (c) measured transmission spectrum of the three-layer CLC film
with an unpolarized light, which is also normalized to a glass substrate.

3.2. Results

As Fig. 3(a) shows, the optical combiner is inclined at 45° from the horizontal plane so that
the observer can see the image in horizontal direction. The experimental setup in a bright
environment (∼500 lux) is shown in Fig. 5(a), in which the device is illuminated by a fluorescent
tube with color temperature at ∼6500K. Figure 5(b) is a control group, whose OC is a 2-inch
glass substrate without any film. By comparing the performance of these two optical combiners,
the image washout in Fig. 5(b) is serious because of the relatively low reflectance in the glass-air
interface, which is around 10% at 45°. The display we used is a LCD panel from iPhone 8,
whose original emitting spectrum and the spectrum after the polarization selective OC are plotted
in Fig. 6(a). Through integrating the area covered by the red line and then divided by the area
covered by the blue line in Fig. 6(a), we find our CLC-based optical combiner reflects ∼74.5% of
the light from display panel. In comparison, we also tested the commercial HUD we have in our
lab (the one we used in Fig. 1), and found its reflectance is only 30%. Thus, the brightness gain is
∼2.5x, which helps to enhance the ambient contrast ratio. Meanwhile, our OC exhibits ∼66.2%
transmittance as shown in Fig. 6(b), which is comparable to the commercial one (∼70%). Later,
we will show a new optical combiner design with T∼78.9% using a low birefringence reactive
mesogen.
Next, we tested the performance of our polarization selective optical combiner in dark

environment. In order to show the effect of PML, we took two photos of the HUD from the
observer’s position shown in Fig. 3(a). Results are depicted in Fig. 7(a) and Fig. 7(b).
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Fig. 5. Image results of HUD system with (a) CLC film-based OC, and (b) glass OC in a
bright environment (∼500 lux).

Fig. 6. (a) Original and reflection spectrum of the display panel, and (b) original and
transmission spectrum of ambient light. Light source: iPhone 8.

Fig. 7. Imaging results of proposed HUD system when the PML is (a) off and (b) on in
dark environment (dotted lines stand for the effective area of PML), and the signal input to
the TN panel when the PML is (c) off and (d) on. (Visualization 1 shows the recorded video.
It is recommended to watch the video in dark ambient so that the contrast ratio improvement
is more obvious than those photos (a) and (b) taken by a camera.)

https://doi.org/10.6084/m9.figshare.12467831
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In Fig. 7(a), the input signal to the TN panel is a black image as Fig. 7(c) shows. All the pixels
in the TN panel are with 5V so that the display light after passing through the PML remains
LCP, which in turn is reflected by the optical combiner toward the observer. Thus, the imperfect
dark state from iPhone 8 (CR≈1400:1) degrades the image contrast ratio. On the other hand,
in Fig. 7(b), the input signal to the TN panel is a black and white “UCF” pattern as Fig. 7(d)
shows, in which the UCF pattern matches the position of colored UCF pattern on iPhone 8
(resolution 1334× 750). Therefore, only those pixels in the TN panel corresponding to UCF
pattern are activated (5V), while the remaining pixels remain off (V=0). As a result, the UCF
pattern preserves LCP and is reflected by the optical combiner, while the background area (RCP)
transmits through. Therefore, the background light level is reduced and the black state gets darker,
as Fig. 7(b) shows. According to our measurement [measured by a photoreceiver (New Focus
2031) and a luminance meter (Konica Minolta LS-110)], with the help of PML the dark state is
suppressed by 3x, i.e. contrast ratio is 3x higher.

Here we briefly summarize our experimental results: the bright state is improved by 2.5x and
the dark state is enhanced by 3x, resulting in a 7.5x total improvement. The dynamic range
(unit: decibel) is related to CR as 10×log(CR). Thus, the dynamic range of our iPhone 8 based
HUD is improved from 10 × [log(1400)], which is 31.46 dB, to 10 × [log(7.5 × 1400)], which is
40.21 dB. The net gain is 8.75 dB. During calculation, we find the dynamic range improvement is
independent of the display panel’s CR.
In principle, all the RCP should transmit through the CLC optical combiner if only Bragg

reflection is considered. However, we still need to consider the Fresnel reflection at the air-glass
interface, which accounts for 5.3% at 45° incidence angle, according to the Fresnel equations.
Moreover, due to the small scattering originated from the TN panel, the display light is no
longer completely polarized after passing through the PML. Figure 8 shows the simulated
relationship between the degree of polarization and contrast ratio improvement for the dark
state. In experiment, the degree of polarization is 88% at λ=532 nm. From Fig. 8(a), the CR
improvement for the dark state is ∼6x in simulation and 5.6x in experiment. The agreement
is good. If the Fresnel reflection is reduced to 1.2% by antireflection coating on the surface,
then the CR improvement for the dark state can reach 11.3x [Fig. 8(b)]. Furthermore, when the
degree of polarization increases to 95%, the CR improvement for the dark state is nearly 20x.
Combining with the bright state improvement, the total CR improvement of system is 50x, which
corresponds to 17 dB dynamic range enhancement. It should be mentioned that the TN panel
we employed was not a perfect broadband half-wave plate for all the visible light, which was
optimized for a green light. As a result, the outgoing beam after PML is not circularly polarized
for some wavelengths. This factor also degrades the CR improvement for white light input,

Fig. 8. Contrast ratio improvement of the proposed HUD system for dark state (a) without
antireflection film and (b) with antireflection film.
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which is about 3x in our experiment. Since the employed TN panel is optimized for the green
wavelength, in experiment we let the display light incident from the green layer side of our CLC
optical combiner, which helps slightly to improve the contrast ratio.

4. Discussion

Currently, the ambient light transmittance of our device is less than 70%. To achieve a higher
ambient light transmittance, we can narrow the CLC reflection bands to better match the
wavelength spectrum of the display, while preserving the polarization selectivity and wavelength
selectivity. Hence, the display light reflection will be more efficient. If the reflection band is very
narrow and sharp at the RGB primary colors of the display panel, then it can achieve higher R
and T, becoming more similar to conventional holographic OCs.

The reflection bandwidth of a CLC film is related to the birefringence (∆n) of the employed LC
material and the CLC helical pitch length (p) as ∆λ = p · ∆n [28]. By using a lower ∆n LC, the
reflection band gets narrower. Currently, the material we used is RM257, whose ∆n≈0.16 in the
green spectrum. DIC’s UCL001 has a much lower birefringence (∆n=0.08). If we use UCL001
to replace RM257 and fabricate the three-layer CLC film, the simulated Bragg reflection bands
are plotted in Fig. 9(a). Consequently, the corresponding reflection spectrum of display light and
the transmission spectrum of ambient light are shown in Figs. 9(b) and 9(c). Through integrating
the area covered by red line and then divided by the area covered by blue line in Fig. 9(c) and
Fig. 9(b), we find the ambient light transmittance is 78.9% and the display light reflectance is
70.5%, respectively.

 
 

Fig. 9. (a) Reflection spectrum of narrowband three-layer CLC OC with LCP input, (b)
original and reflection spectrum of the display with narrowband CLC OC, (c) original and
transmission spectrum of ambient light with narrowband CLC OC.

The color shifts caused by the polarization selective OC can also be evaluated. Since the
driver observes the virtual image reflected by the CLC OC and the real-world image transmitted
through the CLC optical combiner, the color performance is assessed based on the display
reflection spectrum [Fig. 6(a) and Fig. 9(b)] and ambient light transmission spectrum [Fig. 6(b)
and Fig. 9(c)]. In Fig. 10, we plot the white points of the display, ambient light, reflection, and
transmission spectrums in CIE 1976 color space. For the display image reflection spectrum, the
color shift value ∆u′v′ of broadband and narrowband CLC OC is 0.0014 and 0.0098, respectively.
For the ambient light transmission spectrum, the color shift value of broadband and narrowband
CLC combiner is 0.0107 and 0.0026, respectively. All the color shifts remain below 0.02 and are
acceptable for commercial applications [29]. Moreover, in considering the eyepoint shifting, we
also measured the shifted display reflection spectrum of our broadband CLC combiner. When the
viewing angle shifts 15◦, the color shift ∆u′v′ increases from 0.0063 to 0.01, which is still below
the indistinguishable level (0.02). The reason this eyepoint shifting will not cause too much color
shift is that our three-layer CLC film is a broadband device. Even if the reflection band shifts
slightly, it still covers the RGB primary colors of the display. As a result, the reflection spectrum
will not change too noticeably.
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Fig. 10. White points of the display, ambient light, reflection, and transmission spectrums
in CIE 1976 color space. D65: Ambient light.

5. Conclusion

In conclusion, we demonstrate a high dynamic range HUD to overcome the image washout
and light leakage problems. The reported system utilizes a three-layer CLC film as the optical
combiner, which is fabricated by a simple method. Based on the polarization selectivity of the
CLC film, the polarization states of image content area pixels and blank area pixels are converted
to LCP and RCP, respectively, by the PML. Both the bright state and dark state performances are
improved, and the measured CR is enhanced by 7.5x, which corresponds to an 8.75dB dynamic
range improvement. No noticeable color shift on the display reflection spectrum and ambient
light transmission spectrum is observed. All the elements we utilized are cost effective and easily
available. Potential applications of the proposed system for advanced HUDs are foreseeable.
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