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Abstract: We report a non-interferometric single-exposure technique for fabricating 
Pancharatnam-Berry (PB) devices with arbitrary wavefronts, via photo-patterning an azo-dye 
doped LC with a two-dimensional linear polarization field, whose local polarization direction 
can be controlled by a spatial light modulator (SLM) on the pixel level. Upon one exposure, 
different local LC orientations are generated simultaneously. The non-interferometric 
approach is insensitive to environmental disturbance, and moreover, the dynamic phase mask 
on the SLM can be conveniently reconfigured by a computer. Our fabricated PB gratings, q-
plates and hologram exhibit good optical performances. Such a simple yet reconfigurable 
fabrication method enables new PB devices to be developed, and it would open a new 
gateway towards widespread applications. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Pancharatnam-Berry (PB) phase optical elements [1–5], have attracted great research interest. 
Instead of generating phase shift based on optical path difference, PB devices generates it by 
the spatial variation of optical anisotropy. Especially PB devices based on liquid crystals 
(LCs), exhibit extremely high efficiency in the visible region and offers electro-optic 
tunability. In addition to deflecting or focusing light in a thin flat form [6–9], PB LC devices 
are also capable of generating vortex and Bessel beams [10,11], that are extensively used for 
optical trapping and bio-imaging [12–14]. There are two ways to fabricate PB LC devices. 
One is using multi-beam interference [15–17] which could possibly record arbitrary physical 
object’s wavefront and generate corresponding PB patterns. But it vulnerable to 
environmental disturbance and requires coherent light sources. The second approach is by 
photo-patterning of LCs. PB devices were fabricated by photo patterning through static photo 
masks [18–20]. However, once fabricated, the static masks cannot be reconfigured, which 
inevitably increases the fabrication cost and time. Two maskless approaches based on DMD 
(digital mirror device) based micro-lithography [21–23], and direct laser writing [17,24–26], 
respectively, were reported, which could realize arbitrary PB devices without a photo mask. 
However, both techniques can only realize one orientation direction for each exposure. Thus, 
multiple-step exposure and high-precision mechanical rotation of polarizers are still required. 
De Sio et. al. proposed a digital polarization holography method for fabricating arbitrarily-
patterned phase PB devices, by using two quarter wave plates (QWPs) and a spatial light 
modulator (SLM), but the polymerized LC PB devices they fabricated lacked electro-optical 
switchability [27]. 

Here, we propose a non-interferometric single-exposure approach for fabricating 
switchable PB LC devices with arbitrary wavefronts. By appropriately arranging a polarizer, a 
spatial light modulator and a quarter wave plate, a high resolution two-dimensional (2D) 
linear polarization field was generated, and then used to photo-pattern an azo-dye-doped LC 
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mixture. After a one-step photo-patterning, different local orientations can be realized 
simultaneously, forming PB devices with arbitrary phase distributions. To prove the concept, 
in this paper we have fabricated several PB devices, including PB gratings, q-plates, and a PB 
hologram. This simple fabrication technique features low cost, single-step exposure, high 
resolution, reconfigurable phase mask and quasi-continuous pattern variation. In addition, this 
non-interferometric approach is insensitive to environmental disturbance, and free of any 
mechanical movement. Thus, it could significantly facilitate the fabrication of PB devices for 
widespread applications. 

2. Result 

Theory: from phase retardation to polarization rotation 

The basic principle of realizing polarization rotation by controlling phase retardation in our 
proposed approach is schematically illustrated in Fig. 1(a). The incident light passes through a 
polarizer, a uniaxial phase retarder and a QWP successively. Here, the light propagation 
direction is along z axis, and the transmission axis of the polarizer is in y direction. The slow 
axes of the retarder and the QWP are at 45 o and 0 o with respect to the y direction, 
respectively in the x-y plane. Based on Jones Matrix, the output electric vector can be derived 
as: 
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where Exin and Eyin are the x and y components of the input electric field, respectively; and δ 
is the phase retardation of the uniaxial retarder. From Eq. (1), the output electric field is 
linearly polarized with its polarization direction oriented at δ/2 to the y axis. Thus, using such 
a simple configuration, the polarization rotation angle can be precisely controlled by the 
phase retardation. The nature of generating such a linear polarization with controllable 
direction could be also understood in the following way. The linearly polarized o-ray and e-
ray in the uniaxial retarder have equal amplitude but a δ phase difference. After passing 
through the QWP, they become circular polarizations (with opposite handedness and δ phase 
difference) and got superposed, generating a linear polarization whose direction is determined 
by δ. Since such superposition is carried out in a single-beam non-interferometric 
configuration, it is much less sensitive to environmental disturbance than the two-beam 
interference approaches. 

To verify this concept, we carried out a proof-of-concept experiment using a 6-μm 
homogeneous-alignment cell filled with a nematic liquid crystal (E7, HCCH), as the uniaxial 
retarder in Fig. 1(a). When a voltage is applied between the two planar Indium tin oxide 
(ITO) electrodes of the cell, an electric field is induced perpendicular to the substrates, 
inducing LC molecules to rotate and phase retardation to decrease. First, the phase retardation 
δ of the cell at different voltage was obtained by measuring the transmittance under crossed 
polarizers [28]. After that, the LC cell was inserted in the configuration shown in Fig. 1(a), as 
the uniaxial retarder. The output linear polarization was then examined by an additional 
polarizer (not shown in Fig. 1(a)) behind the QWP, as the applied voltage on the LC cell 
varied. Such a polarizer, for analyzing the polarization characteristic, will be referred to as an 
analyzer. From the data in Fig. 1(b), one can see that indeed polarization rotation angle φ is 
approximately a half of phase retardation, δ/2, as predicted by Eq. (1). 

                                                                    Vol. 27, No. 6 | 18 Mar 2019 | OPTICS EXPRESS 9055 



Fig. 1
phase
differe

If the unia
be precisely 
distribution co
Figure 2(a) d
expander (len
and an imagin
same way as 
PLUTO-VIS, 
SLM onto the
and form PB
consisting of 
Upon illumin
adsorption on
stable state w
polarization. M
anisotropy th
green laser u
reasonably hig

Before th
system needs 
L3 and the im
uniform grey-
that its absorp
angle of the a
more than 3π
grey level goe
realizing arbi
achieved, imp

1. (a) Schematic i
retardation δ. (b

ent applied voltage

axial retarder i
controlled on

ould be genera
epicts our prop

nses L1 and L2
ng lens L3. Th
in Fig. 1(a). 
Holoeye) with

e sample positi
 devices. Spec

f 99% E7 and 
nation, MR mo
nto the substra
when their lon
Meanwhile, the
at is determin

used in the exp
gh absorption. 
e fabrication c
to be characte

mage plane, to 
-level pictures

ption axis was p
analyzer versu
 phase change
es from 0 to 25
itrary LC orien
plying feasible 

illustration of app
b) Half of phase 
e for a nematic E7

in Fig. 1(a) is 
n the pixel le
ated, enabling t
posed fabricati
2), a polarizer, 
he optic axes o
The SLM use
h homogeneou
on. The genera
cifically, in ou
1% photo-sen

olecules underg
tes [19]. After
ng axes are ap
e absorbed dye
ed by pre-desi
periment has 

could be impl
erized. An analy
examine the o

s, the analyzer 
parallel to the 
s grey level is

e for 532 nm, t
55, as Fig. 2(b)
ntation. Moreo
realization of q

aratus used to tun
retardation δ/2 an

7 LC cell with a ce

replaced by a 
evel, then an 
the fabrication 
ion system. Th
a reflective liq

of the polarize
d in the exper

us alignment. T
ated light patte
ur experiment,
nsitive azo-dy
go trans-cis tra
r many trans-c
pproximately 
e aligns the LC
igned grey-lev
a center wave

lemented, the 
yzer (not show
utput polarizat
was rotated to

output linear p
 plotted in Fig
the polarization
) shows. Such 
over, a very f
quasi-continuo

ne polarization ro
nd polarization ro
ell gap of 6 μm at 5

SLM, whose p
arbitrary 2D 
of PB devices

he system con
quid-crystal-on

er, SLM and Q
riment is a pu

The function of
ern is then used
, the LC cells

ye methyl red 
ansformation, 

cis cycles, the 
perpendicular 

C accordingly, 
vel pictures loa
elength at 532

polarization-ro
wn in the figure
tion. When the
o obtain minim

polarization. Th
g. 2(b). Since t
n rotation rang
a wide range i

fine angular re
ous orientation 

otation angle φ by
otation angle φ at
532 nm. 

phase retardati
polarization 

s with arbitrary
nsists of a laser
n-Silicon SLM

QWP are orient
ure phase SLM
f lens L3 is to i
d to align LC m
s were filled a
(MR, Sigma 
inducing diffu
MR molecule
to the pump

forming spatia
aded on the S

2 nm where M

otation proper
e) was inserted
e SLM was loa
mum light inte
he measured or
the SLM could
ge is more than
is more than en
esolution (1°) 
variation. 

 

y 
t 

ion could 
direction 

y patterns. 
r, a beam 

M, a QWP 
ted in the 

M (model: 
image the 
molecules 
a mixture 
Aldrich). 

usion and 
es reach a 
ing-beam 

al-varying 
SLM. The 
MR has a 

rty of the 
d between 
aded with 
ensity, so 
rientation 
d provide 
n 300° as 
nough for 
could be 

                                                                    Vol. 27, No. 6 | 18 Mar 2019 | OPTICS EXPRESS 9056 



Fig. 2
levels

Utilizing 
orientation do
with different
a polarizer. O
possesses a d
filled with the
and exposed b
temperature o
realize double

After exp
simultaneousl
polarized whi
domains, with
the picture o
illumination. 
different dom
no alignment 
linearly from 
the cell was 
continuous pa

Fig. 3
polari
arrow
illumi
illumi
polari

2. (a) Optical setup
s when minimum l

the data in F
omains (star, r
t grey levels. F

One can see tha
different polari
e MR-LC mixtu
by the polariza
of the LC cell w
e-side photo ali
posure, three 
ly. Figure 3(b
ite light. Due t
h different MR
f Cell 1 when
Since MR ha

mains is attribut
layer) with a

0° to 90°, from
rotated under

attern variation

3. (a) Light patte
izer. The red arro

ws indicate linear 
inated by a linearl
inated by red light
ized white illumina

p of the proposed f
ight intensity is ac

Fig. 2(b), we 
rectangle, and 
igure 3(a) is a 

at the three dom
ization directio
ure was placed

ation pattern w
was kept at 67
ignment [19].
domains with

) is a picture 
o the anisotrop

R orientations, 
n it was sand
as negligible 
ted to different

an elliptical pa
m the center to
r linearly-polar
n is realized in t

ern with different 
ow indicates trans

polarization dire
ly-polarized white
t. (d) Photos of C
ation. 

fabrication techniq
chieved. 

first generate
background a
photo of the lig

mains appear w
on. Then a cel
d in the image p

with light intens
°C (isotropic) 

h different M
of Cell 1 wh

pic absorption 
exhibit differe

wiched betwe
absorption in 
t LC orientatio

attern, where b
 the edge. Figu
rized white ill
the MR/LC ma

local polarization
smission axis dire
ections in differen
e light. (c) Photo o

Cell 2 rotated at di

que. (b) Analyzer a

ed a polarizat
s shown in Fi
ght pattern tak

with different b
ll (Cell 1, 3 μm
plane of the SL
sity ~40 mW/c
during the wh

MR/LC orienta
hen it was illu
of MR in the v
ent light inten

een crossed po
red, the tran

ons. We also f
both MR and 
ure 3(d) shows
lumination. O
aterial. 

n orientations, ca
ection of the pola
nt domains. (b) 
of Cell 1, under c
ifferent orientation

angle versus grey-

tion pattern w
ig. 3) by mark
ken by a camera
brightness, beca
m, no alignme
LM, as shown 
cm2 for 10 min
hole exposure p

ations were g
uminated by a 
visible region, 
sity. Figure 3(

olarizers with 
nsmittance var
fabricated Cell 
LC orientation

s the photos tak
ne can see th

aptured through a
arizer. Light-green
Photo of Cell 1,

crossed polarizers
ns, under linearly-

 

-

with three 
king them 
a through 
ause each 
ent layer) 
in Fig. 2, 

nutes. The 
process to 

generated 
linearly-
the three 

(c) shows 
red light 

riation in 
2 (3 μm, 

ns varied 
ken when 
hat quasi-

 

a 
n 
, 
, 
-

                                                                    Vol. 27, No. 6 | 18 Mar 2019 | OPTICS EXPRESS 9057 



To demonstrate the versatility of this fabrication method, we prepared several functional 
PB devices, including gratings, q-plates and a hologram, using the same LC mixture and the 
same type of cells. Figures 4(c) and 4(f) show the microscopic pictures of a binary grating 
and a continuous grating, respectively. The LC directors are perpendicular to each other in 
adjacent regions in the binary grating, while those in the continuous grating vary from 0° to 
180° with an increment of 30°. Both gratings have a period of 48 μm. Figures 4(a) and 4(b) 
show the diffraction patterns of the binary grating when the voltage was turned off and on, 
respectively. And Figs. 4(d) and 4(e) show the diffraction patterns for the continuous 
polarization grating. The electro-optic property of the continuous grating was investigated 
using a circularly-polarized probing beam generated from a He-Ne laser (632.8 nm). The 
intensity of the first order at different applied voltage was measured. The normalized 
diffraction efficiency versus voltage curve for the first order is plotted in Fig. 4(g). Dots are 
measured data and the solid line represents simulated result. The diffraction efficiency of a 
PB device at the voltage-off state is η = sin2(πΔnd/λ) [29], where d is the cell gap, λ is the 
wavelength and Δn is the birefringence of the liquid crystal. Here, the thickness of the cell is 
approximately 3 μm and Δn of E7 is about 0.225, so for 632.8 nm, πΔnd/λ∼π, resulting in 
nearly zero diffraction efficiency. As voltage is applied between the two planar ITO 
electrodes of the cell, LC directors tend to rotate to be parallel to the electric field 
(perpendicular to the substrates). Hence, the effective refractive index difference between the 
o wave and e wave decreases, and the phase retardation gets smaller with increased voltage. 
A peak diffraction efficiency ~95.3% is obtained at ~1.6 Vrms when the phase retardation 
satisfies the half-wave retardation condition [30,31]. The measured rise time and decay time 
of the continuous PB grating is 100 ms and 10 ms, respectively. The slow rise time originates 
from the fact that the peak-efficiency voltage (1.6 Vrms) is relatively close to the threshold (~1 
V). To speed up the rise time, overdrive voltage method has been commonly practiced [32]. 

 

Fig. 4. Diffraction patterns of a binary PB grating at (a) voltage-off and (b) voltage-on states. 
(c) Microscopic morphology of the binary PB grating. Diffraction patterns of the continuous 
PB grating at d) voltage-off and (e) voltage-on states. (f) Microscopic morphology of a 
continuous PB grating. (g) Voltage dependent first-order diffraction efficiency of the 
continuous PB grating: dots are measured data and solid line is simulation result. 

We fabricated four q-plates [17,31,33] with topological charge m = 0.5, 1, 1.5 and 2. The 
microscopic pictures of the q-plates under crossed polarizers are shown in Figs. 6(a)-6(d). 
One can see that the LC alignment variation is quite smooth. The vortex light patterns 
generated using circularly polarized illumination from the He-Ne laser were captured by a 
CCD camera and results are shown in Figs. 5(e)-5(h). As m increases, the radius of the final 
optical field is enlarged gradually. 
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