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Vortex vector optical fields (VVOFs) refer to a kind of vec-
tor optical field with an azimuth-variant polarization and a
helical phase, simultaneously. Such a VVOF is defined by
the topological index of the polarization singularity and the
topological charge of the phase vortex. We present a simple
method to measure the topological charge and index
of VVOFs by using a space-variant half-wave plate (SV-
HWP). The geometric phase grating of the SV-HWP
diffracts a VVOF into �1 orders with orthogonally left-
and right-handed circular polarizations. By inserting a
polarizer behind the SV-HWP, the two circular polarization
states project into the linear polarization and then interfere
with each other to form the interference pattern, which en-
ables the direct measurement of the topological charge and
index of VVOFs. © 2018 Optical Society of America

OCIS codes: (050.4865) Optical vortices; (260.5430) Polarization;

(230.1950) Diffraction gratings; (260.6042) Singular optics.

https://doi.org/10.1364/OL.43.000823

As an important optical field, optical vortices carrying orbital
angular momentum (OAM) have been widely implemented in
optical trapping [1], quantum information [2], image process-
ing [3], super-resolution optical microscopy [4], femtosecond
micromachining [5], astronomical detection [6,7], and so on.
The phase front of a scalar vortex field (SVF) is expressed as
exp�ilϕ�, where l is the topological charge (TC) of the phase
vortex and ϕ is the azimuthal angle. For an optical vortex, each
photon carries an OAM of lℏ so that l needs to be an integer
[8]. However, the TC of an optical vortex or the average OAM
per photon can also be fractional [9–11]. The measurement of
the TC has been conventionally done by the interference with
its mirror image [12] or a reference optical field [13,14]. These
measurements often require a complex and precise optical

setup. To facilitate the characterization, various kinds of optical
elements have been proposed for measuring the TC or the
OAM, such as a single or a double slit [15,16], a triangular
aperture [17], a sectorial screen [18], an annular aperture [19],
a tilted convex lens [20], a wedged optical flat [21], a cylindrical
lens [22,23], and an angular double slit [24]. Those optical el-
ements are able to measure both the integral [15–22] and frac-
tional [23,24] TCs, but they were limited to explore SVFs.

Vector optical fields (VOFs) with an azimuth-variant
polarization and a helical phase front, known as vortex vector
optical fields (VVOFs), are also of great interest for applica-
tions, especially in optical communications [25,26]. The
polarization singularity of the VVOFs has been characterized
by the topological index (TI) [27]. To the best of our knowl-
edge, the measurement of both the TCs and TIs for VVOFs
is seldom involved, and the feasibility to measure them by
using the above-mentioned optical elements has not been
investigated.

In this Letter, we propose a new and simple method to mea-
sure the TCs and TIs of VVOFs by using a space-variant half-
wave plate (SV-HWP). Both the integral and fractional TCs can
be measured directly and quantitatively. The TIs of VVOFs
can also be characterized simultaneously. Indeed, SVFs and
VOFs can be considered as two special cases of VVOFs, so that
our method is also able to determine their TCs and TIs.

The experimental setup is shown in Fig. 1. The input optical
field, which will be characterized, can be a SVF, a VOF, or a
VVOF. The input optical field propagating along the z-axis is
normally incident onto a SV-HWP placed in the z � 0 plane.
The SV-HWP used here is a liquid-crystal-based SV-HWP
[28,29], and has been used in virtual and augmented realities
[30,31]. The input optical field can be expressed by the Jones
matrix, as a combination of the left- and right-handed circularly
polarized (LCP and RCP) components:

E injz�0 � El �1;�i�T � Er �1; −i�T ; (1)
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where El and Er denote the complex amplitudes of the LCP
and RCP components, respectively. When the input optical
field expressed in Eq. (1) passes through a space-invariant
half-wave plate at an azimuthal angle ϕ (which is an angle be-
tween the fast axis and the x-axis), the output can be written as

Ẽoutjz�0 � El �1; −i�T e�i2ϕ � Er �1;�i�T e−i2ϕ: (2)
Clearly, the handedness of polarization is flipped and any

output circularly polarized optical field accumulates simultane-
ously a geometric phase of exp��i2ϕ� or exp�−i2ϕ�. For the
SV-HWP we used, ϕ is set to be space-variant and has a form
of ϕ � 2πf x, where f is the spatial frequency and set to be
1.4 mm−1 in our experiments. The space-variant optic axis of
the liquid crystal can be easily realized through the photo-
alignment technique [32]. The refractive index and cell thick-
ness of the liquid-crystal-based SV-HWP are carefully tuned to
make the SV-HWP act as a half-wave plate at a wavelength of
λ � 633 nm. Under the incidence of optical field in Eq. (1),
the optical field output just from the SV-HWP can be ex-
pressed as

Eoutjz�0 � El �1; −i�T e�i4πf x � Er �1;�i�T e−i4πf x : (3)
We can easily see from Eq. (3) that the LCP and RCP com-

ponents of the output optical field are flipped (with respect to the
input field) in handedness, and accumulate synchronously the
linear-variant geometric phases of exp��i4πf x�, respectively.
In fact, the two components of the output optical field are the
�1 orders diffracted by the linear-variant geometric phase grating
of the SV-HWP, respectively. The diffraction angle can be ex-
pressed as θ � 2f λ, which is approximately 0.1° in our case.
After the SV-HWP, the �1 orders will interfere with each other,
and consequently a particular interference field will be generated.
The interference pattern depends on the amplitude, phase, and
polarization distributions of the input field. In particular, the
polarization complicates not only the interference pattern itself
but also its analysis. To resolve the polarization structure of
the interference field, we insert a linear polarizer behind the
SV-HWP, the LCP and RCP components diffracted from
the SV-HWP are projected into the linear polarization along
the x-axis, and then interference with each other in the plane of
a CCD camera placed with a distance of d away from the
SV-HWP. The interference field detected by the CCD should
be written as

ECCD � JpEoutjz�d

� El �x − x0; y�e�i4πf x � Er�x � x0; y�e−i4πf x ; (4)

where x0 � d tan θ is the displacement of the �1 orders in the
x-axis and Jp is the Jones matrix of a polarizer oriented along
the x-axis.

When the input optical field in Eq. (1) is the x-polarized plane
wave (PW) with an uniform amplitude of E0, Er and El in
Eqs. (1) or (4) should have Er � El � 1

2E0. Based on Eq. (4),
the interference field detected by the CCD is expressed as

EPW
CCD � 1

2
E0�e�i4πf x � e−i4πf x�; (5)

which exhibits a parallel interference fringe shown in Fig. 1(b).
When the input optical field is a x-polarized SVF with an

amplitude of E0 and a helical phase of exp�ilϕ�, thus Er and El
in Eqs. (1) or (4) should have El � Er � 1

2E0 exp�ilϕ� �
1
2E0 exp�il arctan�y∕x��, where l is the TC of the phase vortex
and ϕ � arctan�y∕x�. So, under the incidence of a SVF, the
interference field detected by the CCD has the following form:

ESVF
CCD � 1

2
E0e

i�l arctan y
x−x0

�4πf x� � 1

2
E0e

i�l arctan y
x�x0

−4πf x�: (6)

For instance, as shown in Fig. 1(c), when the input SVF has
a TC of l � 1, the two forks contained in the interference pat-
tern, i.e., a downward fork with its center located at �x0; 0� and
a upward fork with its center located at �−x0; 0�, respectively,
are centrosymmetric, which means to be symmetric with re-
spect to the origin of the xy plane [the center of the image
in Fig. 1(c)]. From Fig. 1(c) and Eq. (6), the downward fork
centered at �x0; 0� can be considered as the interference be-
tween a PW and a SVF with the TC of jl 0j � l � 1, which
is expressed by the first term of Eq. (6); while the upward fork
centered at �−x0; 0� is from the interference between a PW and
a SVF with its TC of jl 0 0j � l � 1, as expressed by the second
term of Eq. (6). We define that when the fork pattern in the
region of x > 0�x < 0� is downward (upward), the sign of
l 0�l 0 0� is positive (positive), and vice versa. Based on the above
definition, we have l 0 � l � 1 and l 0 0 � l � 1 in Fig. 1(c).

Figures 2 and 3 show the interference patterns under the
incidence of SVFs with positive TCs �l � �1;�2;�3;�6�
and negative TCs �l � −1; −2; −3; −6�, respectively. Clearly,
the experimental results are in good agreement with the theo-
retical ones for not only the positive (Fig. 2) but also the neg-
ative TCs (Fig. 3). Any interference pattern under the incidence
of SVF exhibits a dual-fork and centrosymmetric structure. For
l � �1, �2, �3, the distance d between the SV-HWP and

Fig. 1. (a) Optical setup to measure the TC of an input optical field.
(b) Detected interference pattern under the incidence of a linearly
polarized PW. (c) Detected interference pattern under the incidence
of a SVF with l � 1.

Fig. 2. Detected interference patterns under the incidence of SVFs
with integral TCs (l � �1;�2;�3;�6, respectively).
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the CCD is set to be 150 mm. For l � �6, d is set to be
300 mm. As d increases, the displacement of x0 will increase
accordingly, so that there will be more fringes between �1 or-
ders along the x-axis. In our case, the number of fringes be-
tween �1 orders is doubled so that the increased bright
fringes can be counted more clearly. For the positive or negative
l , the two forks in any interference pattern have the same num-
ber of bifurcations, which increase along with jl j. For the pos-
itive l (shown in Fig. 2), the interference patterns for the
downward fork [with its center located at �x0; 0�] and the up-
ward fork [with its center located at �−x0; 0�] indicate l 0 �
�1;�2;�3;�6 and l 0 0 � �1;�2;�3;�6, respectively.
While for the negative l (shown in Fig. 3), the upward fork
[with its center located at �x0; 0�] and the downward fork [with
its center located at �−x0; 0�] show l 0 � −1; −2; −3; −6 and
l 0 0 � −1; −2; −3; −6, respectively. Based on the above defini-
tion, therefore, we can assert that the TCs of the input
SVFs in Fig. 2 (Fig. 3) are equal to l � l 0 � l 0 0 �
�1;�2;�3;�6 (l � l 0 � l 0 � −1; −2; −3; −6), respectively.

In the above, only the integral TCs have been involved, and
its magnitude and sign can be determined through the number
and orientation of the fork fringes. For the OAM-carrying SVF,
the TC can also be fractional, which can be presented by the
superposition of a series of integral OAM-carrying SVFs. In our
experiment, the feasibility of measuring the fractional TC has
also been proved. Figure 4 shows the theoretical and experi-
mental results under the incidence of SVFs with the fractional
TCs of l � 0.25; 0.50; 1.50; 2.25, respectively. For the frac-
tional OAM carried by the SVF, the phase step in the �x di-
rection is discontinuous, which refers to a theoretical singular
line in the input field. As propagating in the air, the singular
line of the input SVF will evolve into an obvious dark line [9],
which can be explained by evanescent waves at phase disconti-
nuity [10]. In the detected interference pattern, there also ap-
pears a dark strip starting from the left singularity. As shown in
Fig. 4, when l is changed from l � 0 into l � 0.25, the fringes
between two singularities are disconnected at y � 0, and the
fringes in the upper part with y > 0 shift a quarter of the fringe
period toward the �x direction with respect to the fringes in
the lower part with y < 0. When l � 0.50, the fringes will shift
a half of the fringe period. For l � 1.50 (l � 2.25), the fringes
increase one (two) fringe(s) at the singularities and have a half
(a quarter) of the fringe period. Therefore, we can determine
from Fig. 4 that jl 0j � 0.25; 0.50; 1.50; 2.25 in the fork lo-
cated at �x0; 0� and jl 0 0j � 0.25, 0.50, 1.50, 2.25 in the fork
at �−x0; 0�, respectively. In addition, we can conclude from the

orientations of forks that the signs of TCs of phase vortices
located at �x0; 0� and �−x0; 0� are all positive, based on the
above definition. Therefore, the measured TCs of the input
SVFs are in complete agreement with the default values, i.e.,
l � l 0 � l 0. By this way, the fractional TC can be obtained
quantitatively through measuring the displacement of fringes.
The resolution of the measured TC, which is about 0.1 in our
experiment, is determined and limited by the quality of the
experimental patterns.

For an azimuth-variant VOF, its polarization distribution
should be characterized by the TI of polarization singularity
[27,33]. The VVOFs are a kind of VOFs with an azimuth-
variant polarization and a helical phase, simultaneously.
Thus, a VVOF should be characterized by the TI �m� and
the TC �l�. We now explore the measurement of TI �m�
and TC �l� of the VVOF. To the best of our knowledge, the
measurement of the OAM limits only to SVFs in previous
publications. Here the feasibility to measure the TC of the
SVF, the TI of the VOF, and the TI and TC of the VVOF
is proved by our method. Under the incidence of VVOF (with
EVVOF � E0 exp�ilϕ��cos�mϕ�; sin�mϕ��T ), the complex am-
plitudes, El and Er , in Eqs. (1) or (4) should be expressed as
El � 1

2E0 exp�i�l − m�ϕ� and Er � 1
2E0 exp�i�l � m�ϕ�,

respectively. With Eq. (4), the interference field detected by
the CCD is expressed as

EVVOF
CCD � 1

2
E0e

i��l−m� arctan y
x−x0

�4πf x�

� 1

2
E0e

i��l�m� arctan y
x�x0

−4πf x�: (7)

In fact, the first [second] term indicates the fork pattern
caused by the interference between a PW and a SVF with its
center located at �x0; 0� ��−x0; 0�� and a TC of l 0 � l − m
[l 0 0 � l � m]. Figure 5 (Fig. 6) shows the theoretical and exper-
imental results under the incidence of VVOFs with m � 1
(m � 2) for four TCs, i.e., l � 0; −0.5; −1; −2, respectively.
In the case of l � 0, the input VVOF degenerates into a tradi-
tional VOF without a phase vortex. As a result, the detected
dual-fork interference pattern is symmetric about the y-axis,
where one fringe bifurcates into two (three) at the two singular-
ities, as shown in the first column of Fig. 5 (Fig. 6). In particular,
the two forks in the first columns of Figs. 5 and 6 are upward
under the incidence of a traditional VOF, which is completely
different from the interference patterns under the incidence of
SVFs, as shown in Figs. 2–4. Based on the above definition, in
the first column of Fig. 5 (Fig. 6), we have l 0 � −1 �l 0 � −2�

Fig. 3. Detected interference patterns under the incidence of SVFs
with integral TCs (l � −1; −2; −3; −6, respectively).

Fig. 4. Detected interference patterns under the incidence of SVFs
with fractional TCs (l � 0.25, 0.50, 1.50, 2.25, respectively).
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and l 0 0 � 1 (l 0 0 � 2). For the cases of l ≠ 0 and m ≠ 0 in the
other three columns of Fig. 5 (Fig. 6), i.e., under the incidence
of VVOFs, the fork structures at the two singularities have differ-
ent bifurcation numbers. Based on the bifurcation numbers
at the singularities, we can determine the TCs and TIs of
VVOFs. As is well known, the increased fringes at each singu-
larity are exactly equal to the corresponding TC. Therefore, the
fork structures located at the region of x > 0 in the second, third,
and fourth columns of Fig. 5 (Fig. 6) correspond to l 0 �
−1.5;−2;−3 (l 0 �−2.5;−3;−4), respectively. The fork structures
located at the region of x < 0 in the second, third, and fourth
columns of Fig. 5 (Fig. 6) correspond to l 0 0 � 0.5, 0 and
−1 (l 0 0 � 1.5, 1, and 0), respectively.

With l 0 � l − m and l 0 0 � l � m, we have l � �l 0 � l 0 0�∕2
and m � �l 0 0 − l 0�∕2. Thus we can deduce that
�l ; m� � �0; 1�, �l ; m� � �−0.5; 1�, �l ; m� � �−1; 1�, and
�l ; m� � �−2; 1�, from the first, second, third, and fourth col-
umns of Fig. 5, respectively. Similarly, we also have
�l ; m� � �0; 2�, �l ; m� � �−0.5; 2�, �l ; m� � �−1; 2�, and
�l ; m� � �−2; 2�, from the first, second, third, and fourth col-
umns of Fig. 6, respectively. Clearly, the TC (l ) and the TI (m),
deduced from the experimentally measured interference pat-
terns, are the default values of the input optical fields.

In summary, we presented and validated a method to measure
the TCs and TIs based on the geometric phase grating of a space-
variant half-wave plate. This method is applicable to the scalar
vortex fields, vector optical fields, and vortex vector optical fields.
This method allows us to characterize both the magnitudes and
signs of TCs and TIs, quantitatively and directly, no matter

whether the TCs are integral or fractional. Compared with other
methods, this method is very simple, effective, and has great
potential in scientific and practical applications. In particular,
the space-variant half-wave plate can be used to control the polari-
zation of light and to generate the vector optical fields.
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