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Abstract — Quantum dot light-emitting devices (QLEDs), originally developed for displays, were re-
cently demonstrated to be promising light sources for various photomedical applications, including pho-
todynamic therapy cancer cell treatment and photobimodulation cell metabolism enhancement. With
exceptional emission wavelength tunability and potential flexibility, QLEDs could enable wearable,
targeted photomedicine with maximized absorption of different medical photosensitizers. In this paper,
we report, for the first time, the in vitro study to demonstrate that QLEDs-based photodynamic therapy
can effectively kill Methicillin-resistant Staphylococcus aureus, an antibiotic-resistant bacterium. We
then present successful synthesis of highly efficient quantum dots with narrow spectra and specific peak
wavelengths to match the absorption peaks of different photosensitizers for targeted photomedicine.
Flexible QLEDs with a peak external quantum efficiency of 8.2% and a luminance of over 20,000 cd/m2

at a low driving voltage of 6 Vwere achieved. The tunable, flexible QLEDs could be employed for oral can-
cer treatment or diabetic wound repairs in the near future. These results represent one fresh stride toward
realizing QLEDs’ long-term goal to enable the wide clinical adoption of photomedicine.
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1 Background

Photodynamic therapy (PDT) and photobiomodulation (PBM)
are two branches of photomedicine that involve the application
of light with respect to disease and health. In PDT (Fig. 1a),
light of specific wavelength is used to excite photosensitizers
(i.e., drugs that are nontoxic themselves, but can be activated
by light exposure) and turn molecular oxygen into singlet
oxygen that can kill unwanted tissues, cells (including cancer
cells, bacteria, fungi, and viruses) and thus lead to the
treatments of cancers, infections, etc. In PBM (Fig. 1b), light
can enhance cellular function leading to beneficial clinical
effects, such as wound repair or hair regrowth.1

Although PDT and PBM have already been clinically
demonstrated as effective minimally invasive or noninvasive
strategies to treat cancers and infections, improve wound
repair, reduce pain, grow hair etc., they still have not
received widespread acceptance mainly because of the
challenging light source requirements: the ideal light source

needs to have right color with narrow emission spectrum to
match the absorption peaks of photosensitizers, high enough
power density for sufficient excitation, but low heat to avoid
pain for the patients, and flexible form factors with
homogeneous emission so that can be easily applied to the
patients without worrying about over or under treatments.

Currently, laser and LED arrays are dominating light
sources in photomedicine field because they can provide
sufficient power density at the proper wavelength window.2

However, these expensive, hot, rigid, heavy, and
inhomogeneous light sources are not commonly available in
small clinics, and treatments can only be carried out in
limited places and require expensive hospital visits, limiting
their further penetration into practical clinical use.

Organic light-emitting diodes (OLEDs) were once
proposed to work as light-emitting bandages for PDT3

because of their unique form factors as thin, flexible,
lightweight, and uniformly large area luminaire. But this
method was later abandoned, mainly because relatively high
light brightness (>20,000 cd/m2 or ~10 mW/cm2) at
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wavelengths of deep red region is demanded in photomedical
field in order to have deep tissue penetration while still
maintaining sufficient energy for molecular excitations.1

Existing OLEDs with either fluorescent or phosphorescent
emitters cannot achieve such high brightness at the right
wavelength windows because of significant efficiency roll-off
problems of OLEDs at high current density4 and the lack of
efficient deep red emitters with narrow spectra.5

Our group reported ultrabright and efficient deep red
quantum dot light-emitting devices (QLEDs).6 The devices
show peak emission wavelength of 620 nm, narrow
bandwidth of 22 nm and can achieve high current efficiency
(20.5 cd/A at ~20, 000 cd/m2) and small efficiency roll-off at
high driving current density. Ultrahigh brightness of
165,000 cd/m2 can be achieved at current density of
1000 mA/cm2, which sets a brightness record for existing
organic related red light-emitting devices.

With the potential to be low cost, wearable, disposable
light-emitting bandage products, these ultrabright deep red

QLEDs enjoy all form factor merits like OLEDs, while
having emission peak width 3–5 times narrower, and power
density 2–4 times higher (under similar driving conditions)
than OLEDs for the mid-deep red spectral range. These
advantages can translate into over one order improvement
in photomedical treatment efficacy over traditional OLEDs.
Being solution processable at low costs, QLEDs represent
the ideal photomedical light sources with all desired features
over other lighting strategies as summarized in Table 1.

Preliminary PBM and PDT tests with these ultrabright
QLEDs as light sources have been carried out in vitro and
were reported last year in this journal. The experimental
results demonstrated that QLED PBM can increase cell
metabolism in multiple cell lines by ~11–25% over control
systems,7,8 and QLED PDT can kill cancerous cells, in a
similar fashion as inorganic LED arrays.8 The
demonstrations of ultrabright deep red QLEDs and their
effectiveness for PBM and PDT warrant further studies
investigating QLED devices for photomedical applications.

FIGURE 1 — Scheme of working mechanism of (a) photodynamic therapy and (b) photobiomodulation.

TABLE 1 — Competitive advantages of QLEDs over other light source technologies for photomedicine
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In this paper, we present the results of in vitro study for
QLEDs-based PDT Methicillin-resistant Staphylococcus
aureus (MRSA) treatment, the developments of new
quantum dot (QD) materials and the demonstration of
flexible QLEDs. PDT using QLEDs as excitation source
could effectively kill MRSA. QDs with precisely controlled
emission peaks at the absorption wavelengths of
photosensitizers for wound repair, inflammation, and cancer
treatment applications were synthesized. QLED devices on
flexible substrates have been fabricated, encapsulated with
laminated barrier films, and characterized as potentially low
cost, wearable, disposable light-emitting bandage products.
Initial photomedicine markets for these flexible QLEDs have
been identified and the potential impacts of these results to
OLEDs, QLEDs, and photomedicine have been outlined.

2 Experiment and results

2.1 Preliminary photodynamic therapy
Methicillin-resistant Staphylococcus aureus
(MRSA) treatment results
Infections caused by multidrug-resistant bacteria such as
MRSA are extremely resistant to conventional therapies
including conservative antibiotic treatment. Laser-based PDT
has been demonstrated as an efficient way to cure MRSA
infections without invasive treatments.9 To evaluate the
potential of red QLEDs as a light source for PDT infection
treatment, we conducted an in vitro experiment to investigate
the effectiveness of QLEDs-based PDT for killing MRSA.

MRSA bacterium was treated with 10 uM photofrin and
100 mM potassium iodide and then illuminated with
QLEDs powered by a simple battery pack with two 3 V coin
cells. As shown in Fig. 2, the survival fraction of MRSA
dropped to less than 10�6 after 1 h illumination. The result
not only demonstrated that QLEDs can kill MRSA
efficiently for infection treatment but also showed the
extreme simplicity of QLED-based treatment, that is, no
optical fibers, sophisticated drivers, lens, mirrors, or any
other supporting components are needed.

2.2 Synthesis of quantum dots with different
target wavelengths

While we had reported promising results of QLEDs-based
PDT and PBM, it should be noted that the emission
wavelength of the QLEDs we used was 620 nm. Although it
falls into the favorite range for most photomedical
applications (620–670 nm), highly effective phototherapy
calls for better spectral control to maximize the absorption
of specific photosensitizers for targeted photomedicine.

Thanks to quantum confinement effect, by tuning the QD
synthesis conditions (QD’s size and composition), we have
achieved highly efficient QD materials with precisely

controlled emission peaks at the following wavelengths for
targeted medical applications (shown in Fig. 3): (1) 631 nm
for porfimer sodium (Photofrin®), an FDA approved
photosensitizer widely used for various PDT cancer
treatments; (2) 646 nm that is close to the absorption peak
(652 nm) of Temoporfin, a photosensitizer (based on
chlorin) used in PDT for the treatment of squamous cell
carcinoma of the head and neck.

Quantum dots with different wavelengths of 625, 631, and
646 nm all exhibit narrow spectra (full width at half maximum
(FWHM)<22 nm) as shown in Fig. 3. With these QDs that fit
well with the absorption of photosensitizers, better results of
QLEDs-based PDT and PBM are expected.

FIGURE 2 — Survival fraction evolution of MRSA with continuous red
quantum dot light-emitting device illumination assisted photodynamic
therapy, inset: experimental setup.

FIGURE 3 — The absorption spectra (dashed line) of some common pho-
tosensitizers and the experimental emission spectra of quantum dots under
UV excitation. Porfimer sodium (Photofrin®), aminolevulinic acid (ALA),
and temoporfin are three photosensitizers widely used for various photody-
namic therapy cancer treatments. QDs, quantum dots.

298 Chen et al. / Flexible QLEDs for targeted photomedicine



The demonstrated tunability indicates that QDs’ emission
should also be able to be tuned to the absorption of newly
developed photosensitizers. Currently, such wavelength
control is realized by expensive, bulky lasers, although the
laser light needs to be waveguided with optical fibers and
spread out with diffusers for large area applications. QLEDs
have clear advantages over lasers in term of lower expense
and less complexity.

2.3 Flexible devices

Flexible light sources are in obligatory demand for various
medical situations when wearability and integrability are of
uttermost importance, but have been challenging to achieve
with existing expensive, hot, bulky, heavy, rigid, and
inhomogeneous lasers or LED arrays. As a prominent
example, Dr. Serge Mordon of French National Institute of
Health and Medical Research developed a light-emitting
fabric in which light from expensive lasers was guided
through numerous leaky optical fibers that were woven into
a fabric sheet for flexible, homogeneous light delivery for
PDT.10 Compared with the light-emitting fabric system,
flexible QLEDs have clear advantages as low cost, thin,
lightweight, and inherently wearable or integrable light
sources for demanding medical applications.

For flexible QLED fabrication, polyethylene naphthalate
(PEN) film with transparent indium tin oxide (ITO) cathode
conductor and silicon nitride barrier layer was employed as
the substrate. The device stack consists of multiple layers as
ITO/ZnO nanoparticles/Cs2CO3/CdSe-ZnS-CdZnS core-shell-
shell QDs/2,20,7,70-tetrakis[N-naphthalenyl(phenyl)-amino]-9,9-
spirobifluorene/1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile/
Al anode (Fig. 4b). These organic–inorganic hybrid QLED
devices were fabricated by a combination of solution-processing
and vacuum evaporation techniques as reported in Dong et al.6

The completed devices were later encapsulated with laminated
barrier film developed by Holst Center (a hybrid thin-film
encapsulation stack consisting of two inorganic barrier layers of

silicon nitride deposited at low temperature with an organic
layer in between11) (Fig. 4).

After encapsulation, the devices were tested in ambient
condition. The electroluminescence spectrum (as exhibited
in Fig. 5a) displays a saturated QD emission profile (FWHM
of 28 nm with a peak wavelength of 630 nm), falling right
into the absorption range of Photofrin® as shown in Fig. 3.

Figure 5b demonstrates the current-density/luminance/
voltage (J-L-V) characteristics of the flexible devices. With a
turn-on voltage of 1.9 V, the QLEDs could achieve a peak
external quantum efficiency (EQE) of 8.2% at the current
density of 19 mA/cm2, corresponding to a luminance of
1800 cd/m2. Luminance can reach up to over 20,000 cd/m2,
which is sufficient for photomedicine treatment, at a current
density of 283 mA/cm2 and a driving voltage of only 6 V. It
should be noted that the devices exhibit relatively low
efficiency roll-off at high current densities, compared with
typical OLEDs/QLEDs (Fig. 5c). QLEDs’ EQE only
dropped 1.5% when luminance increased from 1100 nits
(8.2%) to 20,000 nits (6.7%).

Although the lifetime of these flexible QLEDs are limited
in air at current status, it is expected that established flexible
OLED encapsulation technologies (e.g., atomic layer
deposition (ALD) encapsulations) could prolong the lifetime
of QLEDs to a level to satisfy clinical requirements of
photomedical treatments. Ultrabright flexible QLEDs
represent the ideal light sources to work as highly efficient,
low-cost, wearable, and disposable bandage products for
photomedical treatment in terms of the high luminance,
wavelength tunability, and narrow spectra.

3 Flexible QLEDs for treatment of two specific
diseases: Diabetic wound and oral cancer

The vast opportunities of photomedicine posed a special
challenge for research decisions. After careful evaluation,
oral cancer and diabetic wounds treatments were selected as

FIGURE 4 — (a) Photograph of one flexible quantum dot light-emitting device lighting up in air and
(b) structure of the flexible devices on PEN substrate. ITO, indium tin oxide; PEN, polyethylene
naphthalate; QDs, quantum dots.
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initial QLED treatment targets because of the technical
feasibility, high social impacts, and commercialization
potential. The treatment of oral cancer or diabetic wounds
has urgent requirements of device flexibility, light
homogeneity, while the device size can be small (<2 cm2)
and can thus be fabricated in research or pilot scale
laboratory at low cost (<$10/piece).

Oral cancer has been considered as a global health crisis
because of its high incidence in India. Although largely pre-
ventable, cancers of the oral cavity account for over 30% of
cancers reported in India. This is one of the highest oral
cancer rates in the world and is largely due to the wide-
spread popularity of chewing gutka, a tobacco mixture with
crushed betel nut and acacia extract. Treatment typically
consists of surgery and/or radiotherapy, which require exper-
tise and medical infrastructure that are often not available
in the settings where they are most needed. Even if the dis-
ease is detected relatively early, these interventions can be
disfiguring and present major quality of life issues including
the ability to chew, swallow, speak, and work, thus
increasing the societal economic burden on an already
burdened economy. On the other hand, early clinical studies
showed that PDT is a safe and effective approach, with
remarkable healing and is especially effective for early stage
cancerous and precancerous lesions of the oral cavity. While
PDT photosensitizer is readily available, the expensive laser
light source that is currently main stream treatment option
is not.12,13

Wound healing in diabetes mellitus is often impaired and
results in nonhealing or long-lasting chronic skin ulcers.
Current treatment of the diabetic wound includes systemic
glycemic control, local wound care and infection control,
revascularization, and pressure relieving strategies. However,
results from existing multidisciplinary treatments are often
unsatisfactory. PBM with red light has been demonstrated to
improve diabetic wound healing by accelerating collagen
production, enhancing angiogenesis, increasing wound
closure rate, and increasing growth factor expression. While
OLEDs have been applied to improve diabetic cutaneous
wound healing in rats, their broad emission peaks and
relatively low power density remain limiting the treatment
effects.14,15

For both oral cancer treatment and diabetic wound
repairs, flexible QLED light source is expected to greatly
simplify the light source setup, lower the overall treatment
cost, and enhance quality of life of patients.16,17

Although the public concern of cadmium contained in
QD materials could be a political challenge without solid
biomedical evidences, it should be noted that QLEDs with
hermetic encapsulations leave little chance of cadmium
leakage. The concern for cadmium can be eased out
through serious medical evaluation of the QLED’s
beneficial treatment effect and close monitoring of any
possible side effects.

4 Impact and perspectives

In this paper, we demonstrated that QLEDs-based PDT can
effectively kill MRSA bacteria. QDs with high efficiency,
narrow spectra, and specific wavelengths of interests to
photomedicine were successfully synthesized. The emission
spectra of these QDs can match well the absorption of
different photosensitizers, thus could improve the
photomedical treatment efficacy. Flexible QLEDs, which
could be perfect light sources for photomedicine, were
fabricated and demonstrated peak EQE up to 8.2% and
high luminance over 20,000 cd/m2 at low driving voltage.

These progresses further demonstrate the feasibility of
using QLEDs for photomedical applications and prepared
us well for future flexible QLED-based targeted
photomedicine developments. To move the project forward
to clinical adoptions of QLEDs in photomedicine, we
envisioned that technical challenges lie on the inherently
multidisciplinary nature of this project that requires deep
understanding and close collaborative progress on QLED
device performance, medical treatments, and regulatory
approval process. These challenges, on the other hand,
could create a huge opportunity for OLEDs, QLEDs and
photomedicine with tremendous potential technical,
economic, and social impacts (Fig. 6). For mature OLED
technology, their established knowledge of flexible devices
will be important for further development of flexible

FIGURE 5 — Flexible inverted quantum dot light-emitting devices. (a) Spectra of quantum dot light-emitting device electrolumines-
cence at 3 V; (b) luminance and current density versus driving voltage; and (c) external quantum efficiency and luminous power effi-
ciency versus luminance for typical devices. Device was tested at ambient condition (temperature: ~25°C; humidity: ~70%).
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QLEDs which, as an emerging technology, have clear
advantages in color tunability, color purity, and high power
density over state-of-the art OLEDs. The joint efforts of
OLED and QLED communities will enable advanced thin,
flexible, lightweight, homogeneously large area QLED
devices that will gear up the adoption of photomedicine in
multiple hundred-billion-dollar healthcare markets,18,19

helping manage cancer, acute and chronic wounds,
inflammation, and antimicrobial resistance among others.
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