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oposed a compact, yet high ambient contrast ratio augmented reality (AR) system
by incorporating a tunable transmittance liquid crystal (LC) cell and a thin functional reflective polarizer.
The broadband polarization-independent guest–host LC cell can change the transmittance from ~73% to
~26% with merely 8 V. Its response time (~50ms) is at least 10× faster than that of photochromic mate-
rials used in commercial transition glasses. Combining the LC cell with a light sensor, the tunable trans-
mittance LC cell can efficiently improve the ambient contrast ratio of the AR system under different
lighting conditions. Meanwhile, the functional reflective polarizer works similarly to a polarizing beam
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splitter, except that it is much more compact and lighter weight. With some modification, we also

designed a functional reflective polarizer to help people with color vision deficiency.
Keywords — variable transmittance, reflective polarizer, color vision deficiency.
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1 Introduction

Augmented reality (AR) has become quite popular as it works as
a bridge between the real world and the virtual world. An optical
see-through AR system can successfully combine the ambient
environment and the display light.1–4 To achieve this goal, a
polarizing beam splitter (PBS) is usually utilized by reflecting
the display light and transmitting a portion of the ambient light.5

However, the PBS encounters two shortcomings: (i) it makes
the whole system bulky and heavy6,7 and (ii) it is still challenging
to obtain high contrast ratio when the ambient light is strong.

In this paper, we propose an AR system combining a tunable
transmittance liquid crystal (LC) film8 with a reflective polarizer
to replace the PBS. The LC film exhibits high transmittance
when the ambient light is weak but low transmittance when
the ambient light is strong. As a result, it improves the ambient
contrast ratio (ACR). The reflective polarizer works similarly to
the PBS, except it is much lighter andmore compact. Moreover,
if we replace the reflective polarizer with our specially designed
functional reflective polarizer,6,7 the system can help those users
with color vision deficiency (CVD).9,10 Our approach works well
as long as the light from the display panel is polarized. Its appli-
cation can extend to vehicular head-up displays (HUDs).
2 The AR system

The structure of the AR system is shown in Fig. 1. The tunable
transmittance LC film is laminated on the front surface of the
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eyeglass, and the reflective polarizer/functional reflective polarizer
is laminated on the back surface of the eyeglass. For the polarized
display, a possible choice is a liquid-crystal-on-silicon (LCoS)11–13

pico-projector with an output angle range of ±15°.
The electrically tunable-transmittance LC film works to-

gether with a light sensor so that the LC film is clear at low am-
bient light conditions, and it turns to a dark state at high ambient
light conditions, thus ensuring a high ACR under all conditions.
The performance of the tunable transmittance LC film will be
discussed later in Section 3. The reflective polarizer, also known
as dual brightness enhancement film (DBEF),6,7 works the
same way as the PBS by reflecting one polarization while trans-
mitting the other. The main advantages of the reflective
polarizer are twofold: its size can be much larger, and its weight
much lighter than those of PBS. Moreover, if we replace the
reflective polarizer with our specially designed functional reflec-
tive polarizer, such system can help people with CVD,more pre-
cisely people with anomalous trichromacy.14 The design and
performance of the functional reflective polarizer will be shown
in Section 4 and Section 5, respectively. Besides AR systems, our
device can also be laminated to the windshield for high ACR
vehicular displays. In this case, both films can be laminated on
the inner surface of the windshield.
3 Tunable transmittance LC film

A tunable transmittance system is desirable for applications
where the ambient light is strong, for example, outdoor
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displays, energy efficient windows and car windshields. Sev-
eral approaches have been developed to achieve tunable
transmittance. The most mature one is the photochromic ma-
terials15 used in transition glasses. However, besides their ex-
ceptional performance, transition glasses often suffer from
sluggish response time,15 as shown in Fig. 2(a)–(b). In exper-
iment, we irradiated UV light onto a commercial transition
glass and measured its time-dependent transmittance, as
Fig. 2(a) depicts. From Fig. 2(a), the transmittance drops
from ~83% to ~10% in 30 s. As soon as the UV lamp was
turned off, the transmittance changes back to ~83% gradually
in 25min [Fig. 2(b)]. Such a slow response time is not practi-
cal for AR systems, and thus we proposed a fast-response tun-
able transmittance LC film.

Our voltage-driven tunable transmittance LC film is
powered by AlphaMicron’s e-Tint technology based on the
guest–host approach.8 In this approach, the LC host
(Δε< 0) is doped with ~3% black dichroic dyes and a small
amount of chiral agent. The working principle of the guest–
host LC cell is illustrated in Fig. 3(a)–(b). At V=0, the LC di-
rectors and dichroic dyes are homeotropically aligned, and the
absorption loss of the incident white light is minimal. Thus,
the LC cell is highly transparent. Once the voltage exceeds a
threshold, the LC directors and dichroic dyes are reoriented
FIGURE 1 — Device structure of the proposed AR system.

FIGURE 2 — Time-dependent transmittance of a com
dark state and (b) from dark state to bright state.
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by the electric field to form a 180° super twisted nematic
(STN) mode8 because of the doped chiral agent. Such a
180° STN guest–host structure absorbs the incident light
strongly, and the effect is insensitive to the polarization of
the incident white light. The detailed mechanisms of such a
chiral-homeotropic cell (without dyes) have been described
in Ref. 16.

The voltage-dependent transmittance of our LC cell is
shown in Fig. 4, and from the bright state (V=0) to the dark
state (8V), the transmittance varies from ~73% to ~26%.
With an embedded ambient light sensor, the LC film can
control the transmittance adaptively according to its bright-
ness. As a result, it helps to obtain high ACR. Besides the
tunable transmittance, the measured turn-on time (bright
to dark) is 3.8ms, and turn-off time (dark to bright) is
50.5ms. Such response time is at least 10× faster than that
of transition glasses.

A see-through AR system projects the displayed images
onto real world background. That means the “dark” state of
the LC cell cannot be totally dark, and our LC film can
successfully achieve this purpose, as demonstrated in Fig. 5
(a) and (b). The photos were taken under normal indoor
lighting. From Fig. 5, we can tell that the LC cell is quite
clear at the bright state (V=0). At the darkest state (8Vrms),
although the transmittance drops we can still distinguish
the RGB colors clearly.
4 Functional reflective polarizer

Reflective polarizer has been widely used in display back-
lights, and here we extend its application into AR systems.
Figure 6(a) depicts the structure of a contemporary reflec-
tive polarizer consisting of hundreds of stacked isotropic
and uniaxial layers. In the x direction, the light sees alterna-
tive refractive indices n1 and n2, and the film works as a di-
electric reflector, while in the y direction the light sees
uniform index (n1) so that the light is transmitted. For our
functional reflective polarizer, we modified the design by
varying the refractive index in both x and y directions.
mercial transition glass: (a) from bright state to



FIGURE 3 — Working principle of the tunable transmittance LC film at (a)
bright state and (b) dark state.

FIGURE 4 — Voltage-dependent transmittance of the LC film.

FIGURE 5 — The performance of the LC cell at (a) bright state and (b) dark
state.

FIGURE 6 — Structure of (a) a conventional reflective polarizer and (b)
our proposed functional reflective polarizer.
And instead of one uniaxial material and one isotropic mate-
rial, we stacked two isotropic materials and one uniaxial ma-
terial alternatively. The isotropic materials we used in our
design are NOA81 (n= 1.57) and polyferrocenes
(n = 1.82),17 and the uniaxial material is LC (BL038,
ne = 1.82, no = 1.57) polymeric film.7 The design of the func-
tional reflective polarizer is based on the transfer matrix
method and the 4× 4 method,7 the schematic view of the
functional reflective polarizer is shown in Fig. 6(b) and we
can see that to design a functional reflective polarizer, three
materials are used and the uniaxial material can be aligned
along either the x direction or the y direction.

Based on the 4 ×4 matrix method, we designed the
functional reflective polarizer for people with CVD. This
functional reflective polarizer consists of 800 layers with a
total thickness of 30μm. The transmittance of the func-
tional reflective polarizer is shown in Fig. 7. For the polar-
ized display light, which has been tailored for people with
CVD, it will be efficiently reflected into the viewer’s eye. As
for the environment light, half of it is reflected back, while for
the other half the functional reflective polarizer works as a notch
filter. How this functional reflective polarizer can help people
with CVD will be discussed later in Section 5. Here we assume
the display light is polarized along the x direction, in which the
functional reflective polarizer works at the reflective state. For
the y polarized light, the functional reflective polarizer is highly
transmissive. The angular performance of the functional reflec-
tive polarizer is simulated, and results are depicted in Fig. 7. We
can see that the transmittance curve for the reflected state is
really broadband and does not change much at the incident
angle of 15°. For the transmissive state, the blue shift of the
transmittance curve is only ~5nm. These results indicate that
our functional reflective polarizer can work for a relatively large
incident angle. For practical applications, we can optimize the
transmittance curve of the functional reflective polarizer to
make it work for even larger incident angles. One possible
optimization is to fine-tune the notched band to compensate
for the blue shift at large incident angles.7
FIGURE 7 — Angular-dependent transmittance of the functional reflec-
tive polarizer.
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FIGURE 8 — Spectral sensitivity of people with (a) normal vision and (b) protanomaly. The magenta
line is the transmittance of the functional reflective polarizer for the transmitted state.
5 Performance of the functional reflective
polarizer for people with CVD

Color vision deficiencies can be classified as anomalous
trichromacy, dichromacy and monochromacy.9,10 Our functional
reflective polarizer works with anomalous trichromacy, where
one of the L, M and S cones becomes anomalous and its sensi-
tivity shifts to different spectral bands. As demonstrated in Fig. 8
(a)–(b), in the case of protanomaly, the spectral sensitivity of the
anomalous L cones has larger overlap with that of the M cones,
compared to a person with normal vision. Here we assume that
the severity of protanomaly is 0.5 (10-nm spectral shift). And
FIGURE 9 — (a) The perceived image without functional reflective
polarizer. From upper left to bottom right, the images correspond to people
with normal vision (upper left), protanomaly (upper right), deuteranomaly
(bottom left) and tritanomaly (bottom right); (b) the perceived image with
functional reflective polarizer. Here we assume the spectra shift is 18 nm.
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our functional reflective polarizer works by reducing the spec-
tral overlap between different cones. For the cases of deuter-
anomaly and tritanomaly, the working principle is the same.

For people with anomalous trichromacy, the perceived
images with and without the functional reflective polarizer is
simulated with the open source isetbio Toolbox,18 and the
simulation method is based on the stage theory of human color
vision.14 Basically with the abovementioned toolbox, we can get
the spectra of the colors by specifying the spectra of the light
source. In our simulation we assume the environment is a view
of lotuses. We assume that the lotuses are displayed by the
OLED panel specified in the toolbox.18 Here we assume the
severity of anomalous trichromacy is 0.9 (18nm spectral shift),
which means the anomalous trichromacy is quite severe. The
simulation results are shown in Fig. 9. We can clearly see that
with our functional reflective polarizer, it can help people with
anomalous trichromacy to see more saturated colors, and at
the same time the overall image contrast is enhanced. These
two properties of our functional reflective polarizer can help
people with CVD distinguish between different objects.
6 Conclusion

With our demonstrated tunable transmittance LC cell, the
ambient contrast of AR systems can be greatly improved. In
the meantime, the system size can be greatly reduced by
our functional reflective polarizer. What is more, with our pro-
posed functional reflective polarizer, augment reality is no
longer a privilege to people with normal vision; it can also
be extended to those with CVD. The system can also be ex-
tended for usage in vehicular HUDs.
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