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Abstract: We report the design and simulation results of an adaptive GRIN 
lens based on multi-electrode addressed blue phase liquid crystal. A high 
dielectric constant layer helps to smoothen out the horizontal electric field 
and reduce the operating voltage. Such a GRIN lens is insensitive to 
polarization while keeping parabolic phase profile as the focal length 
changes. 
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1.Introduction 

Adaptive liquid crystal (LC) lens offers a tunable focal length and is useful for auto-focusing 
[1, 2], 2D/3D switchable displays [3], and tunable photonic devices [4, 5]. Two types of 
adaptive LC lenses have been developed: lenticular lens and gradient-index (GRIN) lens. The 
latter is more attractive because it uses planar surface structure and has less LC alignment 
issues [6]. Several approaches for generating gradient refractive index in a nematic LC have 
been demonstrated [6–13]. Among them, multi-electrode structure [12, 13] enables finer 
phase control for producing nearly ideal parabolic phase profile. However, conventional 
nematic LC lens requires two orthogonally oriented cells to overcome the polarization 
dependency. Moreover, the response time is relatively slow, especially when a thick LC layer 
is used for obtaining a short focal length. 

To overcome the abovementioned problems in nematic LC devices, polymer-stabilized 
blue-phase liquid crystal (BPLC) based on Kerr effect has been proposed [14–17]. BPLC 
exhibits submillisecond gray-to-gray response time [18] and it does not require LC alignment 
layer. A hole-patterned microlens using polymer-stabilized BPLC has been recently 
demonstrated experimentally [19]. However, this lens has a compromised image quality due 
to non-ideal phase shape, and the two orthogonal polarizations possess a slightly different 
focal length because of the strong horizontal electric fields near the edge of the hole. A 
polarization independent BPLC lens based on concave (or convex) electrodes has also been 
proposed [20], but it requires sophisticated fabrication process and precise control of the 
electrode shape. 

In this paper, we utilize a multi-electrode structure to control the lens phase profile and a 
high dielectric constant (ε) layer to achieve low voltage operation. A conventional transparent 
dielectric material TiO2 has ε = 80, whereas the TiO2 film doped with 0.35 at. % Nb can reach 
ε = 311, or doped with 0.4 at. % Ce can reach ε = 120 [21]. Our simulation results show that 
the proposed BPLC lens is polarization insensitive while keeping parabolic-like phase profile 
during focus switching. 

2. Design and device configuration 
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Fig. 1. Cross section of the proposed multi-electrode BPLC lens. 

Figure 1 shows the side-view of our proposed BPLC lens. It consists of a multi-electrode 
structure over-coated with a 9-µm-thick high dielectric constant material. The bottom 
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substrate has a planar ITO (indium tin oxide) electrode on the inner side. The cell gap and 
diameter of the BPLC lens is 6µm and 180µm, respectively. In Fig. 1, the electrode width 
from the edge to the center (i.e., with the voltages from V1 to V5) is 25, 7, 5, 3 and 2µm, and 
the distance between each electrode is about 12µm on the top substrate. All the electrodes are 
assumed to have 0.04µm in height. 

In the proposed structure, when V0 = V1 = V2 = V3 = V4 = 0, the BPLC is optically isotropic 
and does not contribute to any phase change. As the applied voltage increases, vertical electric 
fields are generated in the BPLC layer. Based on the Extended Kerr model [22], the induced 
birefringence is proportional to electric field (E) as shown in Eq. (1): 

 2( ) [1 exp( ( / ) ],
induced s s

n E n E E∆ = ∆ − −  (1) 

where ∆ns is the saturation induced birefringence and Es is the saturation electric field of the 
BPLC composite. For a normally incident light, it experiences an ordinary refractive index 
which depends on E as 

 ( ) ( ) / 3,
o iso induced

n E n n E≈ −∆  (2) 

regardless of polarization, provided that horizontal field does not exist. In Eq. (2), niso is the 
refractive index in the isotropic state, i.e., E = 0. In our device, the bottom planar electrode is 
always grounded (V0 = 0). In order to obtain a positive lens and high efficiency, the electric 
field should be kept at zero at the lens center. Thus, we set V5 = 0. Meanwhile, to obtain the 
desired parabolic phase profile the voltage from the center to the edge electrodes should 
increase gradually. 

The importance of the dielectric layer is twofold: 1. On the top substrate, each electrode 
will cause a drastic voltage change near the electrode, so it needs a dielectric layer to 
smoothen out the phase profile. 2. The horizontal electric field produced between two top 
electrodes is very strong near the electrodes, thus, it will cause polarization dependence for 
the lens. On the other hand, higher dielectric constant of the dielectric layer is preferred. For a 

large Kerr constant BPLC (Kerr constant K≈∆ns/λEs
2
 = 10 nm/V

2
), its dielectric constant is 

often large. For example, Chisso JC-BP01M has a dielectric constant εLC~45 in the voltage-
off state [23]. The employed dielectric layer and BPLC layer can be treated as serial 
capacitors, and the applied voltage is divided into two terms: 

 .total BPLC dielectric

BPLC dielectric

Q Q
V V V

C C
= + = +  (3) 

In Eq. (3), Vtotal is the voltage between two electrodes on the top and bottom substrate, 
VBPLC and Vdielectric stand for the voltage on the BPLC and dielectric layer, respectively; Q is 
the accumulated electric charge, and CBPLC and Cdielectric are the capacitances of BPLC and 
dielectric layer, which are proportional to the dielectric constant εLC and εdielectric. For a given 
Vtotal and εLC, a high εdielectric in Fig. 1 helps to obtain a high VBPLC. Undoped TiO2 is an 
attractive candidate because of its high transparency and large dielectric constant (~80). It can 
also be prepared by sol-gel process to obtain a thicker film. With a proper doping, the 
dielectric constant of TiO2 can be enhanced to be over 120 [21]. Thus, in next section we use 
εdielectric = 80 and 120 in our simulations and compare their performances. 

3. Simulation results 

We use a commercial software Techwiz (Sanayi, Korea) to compute the electric potential 
distribution and then calculate the optical properties based on extended 2x2 Jones Matrix 
[24,25]. Let us assume the BPLC has ∆ns~0.2 (at λ = 550 nm), ES~5.6 V/µm, and Kerr 

constant K≈∆ns/λEs
2
 = 11.5 nm/V

2
, which is similar to the data reported in [22]. 

Figure 2 shows the simulated relative phase profiles of the proposed GRIN lens with εLC = 
45 and εdielectric = 80. The electrode voltages V1, V2, V3, V4 and V5 are 75V, 44V, 26V, 13V and 

0V, respectively. We only examine the central 150µm (from −75 µm to + 75 µm) of the lens. 
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Beyond this region, the lens fringe is not parabolic anymore. For convenience, we set the 
phase at center of lens to be zero. To investigate the polarization effect, we plot the relative 
phase profiles for e-wave (red line) and o-wave (blue line), as compared to the ideal parabolic 
shape (black line). For the lens locations at around ± 60µm, the maximum phase difference 
between e-wave and o-wave is less than 0.036 π. The phase difference of the center and the 
edge for proposed structure is 1.1π. For the structure without dielectric layer in Fig. 1, the 
total phase difference will be 1.4π between the center and the edge. This is because the 
dielectric layer shields part of the voltage according to Eq. (3). Moreover, the proposed 
structure also creates good parabolic phase shapes for both e-wave and o-wave within ± 10% 
tolerance of the parabolic line. This implies that such a BPLC lens is polarization insensitive. 
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Fig. 2. Simulated phase profiles across the central 150µm of the lens for e-wave, o-wave, and 
ideal parabolic shape. 

Next, we change the dielectric constant εdielectric from 80 to 120. To obtain the same phase 
change and profile, we adjust the voltages from V1 to V5 to be 65V, 38V, 22V, 11V and 0V; 
other parameters stay unchanged. Results are shown in Fig. 3(a). The maximum phase 
difference is still 1.1π which is almost the same as that in Fig. 2. However, the required 
maximum voltage is reduced from 75V to 65V because of the reduced voltage shielding 
effect. Also, the phase profile matches well (within ± 9%) with the parabolic profile (black 
line) in Fig. 3(a). For the lens locations at around ± 60µm, the maximum phase difference 
between e-wave and o-wave is less than 0.032 π. Moreover, we decrease the maximum 
voltage from 65V to 25V to alter the phase difference and focal length. To fit the parabolic 
phase profile, the voltages from V1 to V5 subsequently become 25V, 18V, 10.8V, 5.5V and 
0V. From Fig. 3(b), the maximum phase difference is 0.28π. Although the e-wave (red line) 
and o-wave (blue line) phase profile in Fig. 3(b) is not as good as 3(a), it still remains within ± 
11% tolerance as compared to the parabolic line (black line). Figure 3(b) also shows a good 
consistency between e-wave and o-wave. For the lens locations at around ± 60µm, the 
maximum phase difference between e-wave and o-wave is less than 0.004 π. In our design, 
higher operating voltage tends to have better phase profile. Table 1 summarizes the voltage 
dependence of phase and focal length. The voltages from V1 to V4 are chosen to fit the 
parabolic phase profile. They can be digitally controlled to minimize the aberrations. In Table 
1, the radii and phases are indicated to fit the parabolic phase profiles, note that it is not the 
same as the diameter described in Fig. 1. And the focal length can be calculated from 
following equation: 
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n E dδ
=  (4) 

where δn(E) is the index difference between the lens center and edge, R is the radius of the 
lens, and dLC is the BPLC layer thickness. 
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Fig. 3. Simulated phase profile of the BPLC lens with εdielectric = 120. (a) The maximum voltage 
is 65V, resulting in 1.1π phase difference. (b) The maximum voltage is 25V, resulting in 0.28π 
phase difference. 

Table 1. Simulated Phase and Focal Length at Different Operating Voltages. 

Radius 
(µm) 

V1 (Volt) V2 (Volt) V3 (Volt) V4 (Volt) Phase (π) Effective Focal 
length (mm) 

65 65.0 38.2 22.3 11.0 1.05 7.32 
65 55.0 33.0 19.8 9.9 0.90 8.77 
65 45.0 29.7 17.6 8.6 0.70 11.31 
65 35.0 24.5 14.4 7.0 0.49 16.66 
65 25.0 18.0 10.8 5.5 0.26 29.21 
65 21.0 15.5 9.2 4.8 0.20 38.41 
65 15.0 11.3 6.8 3.6 0.11 72.00 

Briefly, we summarize the important points for optimizing the proposed structure: For a 
GRIN BPLC lens, a dielectric layer is inevitable to shield the horizontal electric field. A 
thicker dielectric layer will lead to a better consistence for e-wave and o-wave. In addition, 
the proposed multi-electrode structure needs a dielectric layer to smoothen the voltage around 
each electrode on the top substrate. However, this dielectric layer will also shield the voltage 
applied to the BPLC layer according to Eq. (3). Therefore, a high-ε dielectric layer is 
preferred. On the other hand, if the operating voltages, the dielectric layer thickness, and the 
BPLC thickness are all fixed, and the multi-electrode pattern remains the same line/space 
ratios, then the larger the lens diameter is, the more consistent the e-wave and o-wave are. 
This is because the vertical field has stronger effect than horizontal one in this case. However, 
it is hard to maintain parabolic phase profile if the gaps between electrodes on the top 
substrate keep on increasing. Otherwise the number of electrodes has to be increased. Also the 
phase profile can be optimized further by increasing the number of electrodes. But it requires 
more addressing voltages. 
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Figure 4 shows the voltage-dependent focal length for the lens structure in Fig. 1. The 
“voltage” in Fig. 4 means the maximum voltage among electrodes. The black curve (squares) 
is for dielectric layer with εdielectric = 80, whereas the red one (circles) is for εdielectric = 120. At a 
given voltage, the multi-electrode structure with εdielectric = 120 keeps a somewhat shorter focal 
length. As expected from Eq. (4), the focal length gets shorter as the voltage increases. For 
each data point in Fig. 4, since the e-wave and o-wave are consistent and have the same 
phases at the center and the edge, their focal length would be the same. In the low voltage 
region, the change of focal length is more dramatic, while in the high voltage region the slope 
becomes flatter. Similar results and explanation can be found in [20]. 
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Fig. 4. Simulated voltage-dependent focal length of the multi-electrode BPLC lens with εdielectric 
= 80 and 120. 

3. Conclusion 

We present a new design of multi-electrode BPLC lens to achieve polarization insensitivity 
and parabolic phase profile. The operating voltages can be digitally controlled to varying the 
focal length from 7.32mm to infinity. Even though at low operating voltages, the proposed 
structure can still maintain good consistence between e-wave and o-wave, and parabolic phase 
shape. By placing higher dielectric constant material for dielectric layer, the operating 
voltages can be further reduced. Since it is a layer-by-layer structure, the fabrication method 
can be easily carried out by the existing lithography process for LCDs. Simulation results 
show that this device is insensitive to the polarization throughout the whole focal lengths. 
Such a device has potential applications for polarization insensitive photonics and displays. 
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