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Abstract: An amplified cholesteric liquid crystal (CLC) laser performance 

is demonstrated by utilizing a binary-dye mixture (with 62 wt% DCM and 

38 wt% PM597) as the active medium and an external stable resonator. The 

measured results show that the laser efficiency is enhanced as compared to 

the highest efficiency of each individual dye. Furthermore, using such an 

active CLC in an external stable resonator leads to a ~92X improved 

efficiency over the single CLC laser. In this instance, the binary-dye doped 

CLC simultaneously functions as laser oscillator and amplifier. 
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1. Introduction 

One-dimensional photonic crystals are optical nanostructures with periodic multi-layer 

dielectric stacks establishing a distributed feedback along the material and defining allowed 

and forbidden photonic energy bands. Cholesteric liquid crystal (CLC) materials are special 

types of quarter-wave stack photonic crystals in which refractive index, in a periodic helical 

structure with a pitch length (p), contrary to common photonic crystals, continuously varies 

from the extraordinary refractive index (ne) to the ordinary one (no) of the liquid crystal. 

Therefore, CLCs show a selective photonic band gap (PBG) into which the circularly 

polarized incident light with the same handedness as the cholesteric helix is reflected while 

the opposite handedness is transmitted. The photonic band edges (PBEs) occur at λs = no p 

and λl = ne p, where s and l specify the short and long wavelengths of the PBG, respectively. 

Since the density of photon states at the PBEs, against within the band, is very large, the 

group velocity approaches zero [1] and the possibility of lasing in CLCs in the presence of a 

proper laser dye as an active material, without any external reflectors, is considerable [2]. 

From the first demonstration of photonic band-edge lasing in CLCs [2] to date, enhancing 

the efficiency and decreasing the threshold energy of CLC lasers have become the most 

important scientific challenges. A high orientational order parameter for the liquid crystal as 

host in CLC lasers gives rise to a pronounced birefringence [3,4] establishing a low threshold 

energy and a high efficiency [5,6]. Laser dyes with a high order parameter of the transition 

dipole moment lead to an optimal performance for CLC lasers [7,8]. In addition to an 

extensive structural study on liquid crystals and laser dyes, a wide variety of optical 

techniques have been utilized to minimize the losses in CLC cavities and amplify the laser 

emission resulting in a low threshold and a high efficiency [9–15]. 

In this paper, we demonstrate two methods for significantly improving the optical 

efficiency of a CLC laser. Firstly, a binary dye mixture consisting of 62 wt% DCM and 38 

wt% PM597 as the active medium is elicited an enhancement of the laser emission in the 

wavelengths between 595 nm and 613 nm, as compared to the highest efficiency of each 

individual dye. Secondly, using such an active CLC in an external stable resonator leads to a 

~92X improved efficiency over the single CLC laser, in which the binary-dye doped CLC 

functions as laser oscillator and amplifier simultaneously. 

2. Sample preparation 

In experiments, we first measured the order parameter of two commercial dyes DCM [(4-

(dicyanomethylene)-2-methyl-6-(4-dimethlyaminostryl)-4H-pyran)] and PM597 [1,3,5,7,8-

pentamethyl-2,6-di-t-butylpyrromethene-difluoroborate complex] (both from Exciton), and a 

binary mixture consisting of 62 wt% DCM and 38 wt% PM597. We doped 1.5 wt% of each 

dye in a nematic liquid crystal host: BL009 (∆n = 0.281, ne = 1.810 from Merck). In addition, 

to measure the laser emission efficiency at various wavelengths, nine active CLC mixtures 

comprising BL009, 1.5 wt% binary-dye mixture, and the left-handed chiral dopant MLC-6247 

(from Merck) with different concentrations (from 25.70 wt% to 29.28 wt%) corresponding to 

various wavelengths were prepared. The whole mixtures were thoroughly mixed before they 

were capillary-filled into the homogeneous LC cells in an isotropic state (at 105°C). The 

thickness of all the employed LC cells was 10 µm. The inner surfaces of the glass substrates 

were first coated with a thin transparent conductive indium-tin-oxide (ITO) electrode and then 

overcoated with a thin polyimide layer. The substrates were subsequently rubbed in 

antiparallel directions to produce ~2-3° pretilt angle. After a slow cooling process (0.3°C/min) 

for active CLCs, a defect-free single-domain cholesteric planar structure was formed. 
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3. Results and discussion 

A crucial parameter effective in the efficiency of dye-doped CLC lasers is the order parameter 

of the transition dipole moment (TDM) of the dye (Std) with respect to the local director ( n̂ ) 

of liquid crystal. In practice, Std can be calculated by the following equation [16]: 
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are the fluorescence intensities emitted from a dye-doped nematic film 

polarized parallel and perpendicular to n̂ . The maximum possible value 1
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⊥
= ) 

corresponds to the case of perfect alignment of the TDM parallel to n̂ , while 0
td

S =  implies 

an isotropic orientational distribution. On the other hand, the values 0
td

S < correspond to a 

preferred orientation perpendicular to n̂ . 

Figure 1 depicts the dependence of laser emission energy on the wavelength for the 

binary-dye doped CLC laser. For comparison purpose, the laser energies for DCM-doped and 

PM597-doped CLC lasers at the maximum fluorescent wavelength of each dye are also 

included. In all the experimental results reported here, the active cell was pumped by a 

frequency-doubled, Q-switched, Nd:YAG pulsed laser (λ = 532 nm, from Continuum) with 

pulse duration of 4 ns, and all the measurements were performed at 1 Hz laser repetition rate 

in order to reduce the accumulated thermal effect originating from dye absorption. The optical 

efficiency of the PM597-doped CLC laser is ~1.5X higher than that of DCM. As Fig. 1 

shows, the laser emission energy for the binary-dye-doped CLC between λ = 595 nm and 613 

nm is even higher than that of PM597-CLC; at λ~605 nm the improvement is over 20%. The 

higher laser efficiency of the binary-dye doped CLC is believed to originate from better 

alignment of the transition dipole moment of both PM597 and DCM with the director arising 

from an effective mutual interaction between these two dyes in the presence of the liquid 

crystal host. To confirm this, the order parameter of DCM, PM597, and the binary-dye 

mixture through measuring the fluorescence intensities (
/ /

I and I
⊥

) were calculated to be 0.33, 

0.45, and 0.55, respectively, which, on average, implies to a better alignment of the TDMs in 

the binary-dye-doped CLC mixture. 

 

Fig. 1. The laser emission energy of binary-dye doped CLC vs. wavelength (blue line), 

PM597-CLC at λ = 586 nm (orange line), and DCM-CLC at λ = 607 nm (red line). Pump 

energy = 25 µJ/pulse for all the measurements. 
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The reasons we mixed the laser dye PM597 with DCM (as a commonly employed laser 

dye in CLC lasers) are threefold: 1) the pump wavelength (532 nm), according to our 

measurement, is approximately on the absorption peak of PM597-BL009 mixture. 2) The 

solubility of PM597 in the liquid crystal host is very good. 3) A negligible overlap between 

the fluorescence spectrum of PM597-BL009 and the absorption spectrum of DCM-BL009 

prevents the fluorescence resonance energy transfer, and thus emits a considerable 

fluorescence which will enhance the output efficiency. The binary-dye mixture consisting of 

62 wt% DCM and 38 wt% PM597 was empirically obtained to be optimal for the BL009 host. 

Of course, this ratio could vary depending on the LC host material because of the detailed 

guest-host molecular interactions. 

Owing to the symmetry of the helical CLC structure, laser emission from the active CLC 

occurs equally in both forward and backward directions parallel to the helix with a left-

handed circular polarization (LCP). To achieve a defect-free planar texture in the active CLC 

which may die away affected by insufficient surface anchoring force in the bulk area, the cell 

gap should not exceed 10 µm. Moreover, for such a short cavity length the lasing efficiency is 

significantly restricted which gives rise to a noticeable diffraction and consequently a highly 

divergent laser beam [9]. So as to resolve this drawback, an external stable resonator, as 

schematically shown in Fig. 2, is utilized. Two similar plano-convex lenses (whose plane 

surfaces facing the CLC laser), in both sides of the active cell, may cause the stability of 

resonator. Without the lenses, there will be a large walk-off loss from the resonator, so that 

only waves that are accurately aligned with the resonator axis will remain within the cavity 

and be able to oscillate. To prevent successive reflections, all the lenses were with anti-

reflection coatings. Due to the symmetry of CLC laser emission, the intervals between the 

lenses and active CLC cell were selected to be identical, i.e., dl = dr = d. 

 

Fig. 2. A schematic diagram of the CLC laser including an external stable resonator. C1 and 

C3: CLC reflectors; Ll and Lr: plano-convex lenses; C2: the active CLC cell. C1 and C3 are, in 

practice, fixed on the plane surfaces of Ll and Lr, respectively. 

Because the passive CLCs reflect circularly polarized light with the same handedness as 

the cholesteric helix while preserving the polarization state of light upon reflection, the two 

passive CLC cells (C1 and C3) with left-handed helix serve as reflectors of the external 

resonator. In this case, the reflection bands of both passive cells should cover the long 

wavelength edge of the active cell’s photonic band gap where lasing takes place (Fig. 3). 
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Fig. 3. The normalized transmittance of active CLC (brown line) and passive CLC (blue line). 

The red line shows the lasing spectrum of the active CLC cell at 10 µJ/pulse pump. 

As Fig. 3 shows, the short wavelength edge of the active cell is obscured by the absorption 

of the binary dye. The lasing wavelength is located at λ~605 nm. The reflectivity of the 

passive CLC cells C1 and C3 (10-µm thick) for the LCP state light in the reflection band 

region was measured to be ~96.9%. Therefore, the laser emission emerges from both sides of 

the resonator symmetrically. In practice, in order to establish an optimal oscillation the cells 

C1 and C3 were fixed on the plane surface of the lenses Ll and Lr, respectively, and each of 

these two sets was attached to a five-axis lens positioning apparatus (Newport Co.) providing 

five degrees of precision positioning. Thus, the interval between each cell (C1 and C3) and its 

respective lens is about 1 mm (the glass substrate thickness of the cells), which may be 

negligible in comparison with d. 

To realize the performance of external resonator, we should note that some energy is 

always died away from the intra-resonator laser field because of scattering, absorption, and 

imperfect mirror reflectivities as transmissive output coupling through both reflectors. Even if 

we completely neglect these loss mechanisms, there is still loss resulting from the resonator 

instability. A laser with an unstable resonator will have a large loss associated with the escape 

of radiation passing the reflectors and consequently need active media with higher gain to 

sustain laser oscillation. Accordingly, to stabilize the external resonator as depicted in Fig. 1, 

we need to specify the stability condition with the aid of ABCD law [17]. Since the 

configuration of the active CLC cell and external resonator has been pondered to be 

symmetric, by using the paraxial approximation and the common ray tracing method, the 

following condition is obtained: 

 
2

2

8 8 3
0 1,

2

d d

ff
≤ − + ≤  (2) 

where f is the focal length of the lenses. Equation (2) leads to a stable oscillation provided that 

(2 3) 4d f≤ −  or (2 3) 4d f≥ + . In our experiment, to reduce aberration we chose the 

lenses with 30f = cm and diameter 50D = mm which implies to 2d ≤ cm or 28d ≥ cm. On 

the other hand, to fulfill the paraxial approximation, the separation of the lenses and the active 

cell should be as short as possible. Therefore, by considering experimental limitations we 

selected d ~1.6 cm. 
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Fig. 4. The laser emission energy dependence on the pump energy of a single CLC laser (pink 

line) and a CLC laser with an external stable resonator (green line). In this experiment, because 

the laser output with an external stable resonator is significantly higher than that of the single 

CLC laser, in order to show this contrast an arbitrary scale which is different from Fig. 1 is 

used. 

To study the impact of external stable resonator on the lasing efficiency, we measured the 

laser emission energy as a function of pump energy for a 10-µm active CLC at λ = 605 nm, 

with and without the resonator. Figure 4 shows the measured results. The single CLC laser 

creates a quite weak laser emission due to a thin emissive layer and consequently a short 

distributed feedback length. By inserting the active CLC into the external stable resonator, the 

laser emission originated from the CLC laser, under the influence of reflectors, is bounced 

back and forth repeatedly through the active medium (C2). As a result, since the circular 

polarization state of the reflected beams is preserved by the CLC reflectors, the field of each 

beam may coherently interact with the active CLC and thus be significantly amplified. 

Accordingly, while the active CLC operates as a laser oscillator individually, it functions as a 

laser amplifier in conjunction with the external resonator. In this case, the laser output is 92X 

stronger than that of the single CLC laser alone. Regarding the polarization of output, it 

should be noted that the existence of boundaries (substrates) at two sides of the active CLC 

layer establishes a refractive index mismatch which causes the Fresnel reflection as well as 

the CLC reflection due to the stop band effect. This gives rise to the laser output polarization 

not completely circular [18]. In the case of external resonator there are some extra boundaries 

of the passive CLCs which are expected to intensify this effect. But our measurements reflect 

that the ellipticity of laser’s polarization for the single CLC laser (~0.93) and the active CLC 

with the external stable resonator (~0.91) are markedly identical, and thus the output 

polarization state is still (to a large extent) left-handed circular, the same as its original 

polarization state. Moreover, the threshold energy is decreased from 8.8 µJ/pulse for a single 

CLC laser to 1.4 µJ/pulse. The spot size of the pump beam (w) was regulated at ~185 µm. Our 

experiment indicates that the amplification factor is noticeably sensitive to the spot size of the 

pump beam. If the spot size is smaller than ~75 µm, no amplification was observed. 

4. Conclusion 

We have demonstrated an approach to significantly improve the lasing efficiency of a CLC 

band-edge laser. This is attained through exploiting a particular binary dye as the active 

material and an external stable resonator. A binary-dye mixture consisting of 62 wt% DCM 

and 38 wt% PM597 improves the lasing efficiency up to 20% (at λ~605 nm) for the 

#128273 - $15.00 USD Received 11 May 2010; revised 31 May 2010; accepted 31 May 2010; published 9 Jun 2010
(C) 2010 OSA 21 June 2010 / Vol. 18,  No. 13 / OPTICS EXPRESS  13598



  

wavelengths between 595 nm and 613 nm, as compared to the highest efficiency of each 

individual dye. With an external stable resonator the laser efficiency is further improved by 

~92X over the single CLC laser. In this instance, the active CLC behaves as laser oscillator 

and laser amplifier simultaneously. As a result, the threshold energy is reduced from 8.8 

µJ/pulse for the single CLC laser to 1.4 µJ/pulse. In addition, the experiment indicates that the 

amplification factor is noticeably sensitive to the spot size of the pump beam, so that if the 

spot size is smaller than ~75 µm no amplification would occur. 
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