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A new single surface integral equation for light scattering
by circular dielectric cylinders
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Abstract

A new single surface integral equation is derived for light scattering by circular dielectric cylinders. Without adopting the concept of
equivalent electric or magnetic surface currents, our formulation is directly derived from coupled-surface integral equations by the prop-
erty of commutative matrices of Green functions. Further development by such matrix equations leads to only one unknown function for
circular dielectric-coated cylinders. In addition, numerical simulations show that even applied to elliptic scatters our equation still gives
reasonably good approximate solutions in the sub-wavelength limit.
� 2007 Elsevier B.V. All rights reserved.
For scattering problems in electrodynamics, integral
approach, in contrast to differential methods, possesses
the analytical characteristic of solution of Helmholtz equa-
tion with point source, namely, an integration of Green
function. With the use of Green identity, the scattering field
is obtained by the integral of the total field and its normal
derivative on the enclosed surface of the object. In scatters
of perfect conductor, the integrand reduces to only one var-
iable, the normal derivative of field, since the field is zero
on perfect conductor. So the integral becomes with one
unknown of Neumann boundary condition. In dielectric
homogeneous object, because none of the two variables
vanishes; one single surface Green integral indeed cannot
be solved with two boundary conditions. For finding these
two unknown functions on the boundary, dual surface inte-
gral equations are indispensable when such integrals are
numerically expressed in two sets of linear algebra equa-
tions [1,2]. For three-dimensional (3D) scattering of arbi-
trary-shaped body, the coupled vector integral equations
require one to solve a set of unknown equivalent electric
and magnetic surface currents [3–5]. The matching of
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boundary conditions between two media in scattering is
accomplished by derivation of the fields from electric and
magnetic potential via the corresponding equivalent cur-
rents. In two dimensional (2D) scattering, due to the
advantage of decomposition of field into TE and TM com-
ponents, the respective Helmholtz equation can be treated
as scalar scattering problems and discussed separately; and
the equivalent surface current is essentially equivalent to
the normal derivative of field. The studies of 2D electro-
magnetic scattering by integral equation method are
extensively found in literature [6–10]. Nevertheless, the
double-loaded coupled integral equations seem unpleasant
in attempting the solution by numerical scheme. The first
effort to reduce these two integral equations into one in
2D problems was proposed by Maystre [9,10]. With the
derivation from distribution theory, Maystre successfully
expressed the boundary field and its normal derivative in
terms of a single surface current function. Once the equiv-
alent current is found, the fields on the boundary can be
obtained through a conversion integral by substitution of
the current function. Later, the same idea was applied
and generalized to 3D scattering problems [11–13]. With
all in common, the substitution of the real field with an
equivalent surface current function is the core constituent
in these formulations.
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In this communication, we derive a new single integral
equation without the conception of equivalent principle
for the cases of circular scattering in 2D scattering. That
is, none of the surface current is necessary in our formula-
tion. Our approach is based on the use of commutative
matrices to simplify two coupled linear algebra equations
into one. With the same technique applied to circular
dielectric-coated cylinders, we successfully reduce a set of
four integral equations into one single linear algebra equa-
tion. All these works with consistent numerical results are
addressed as follows.

Let us consider the scattering from a circular dielectric
cylinder as shown in Fig. 1. In spite of the existence of
the analytical solution [4], the coupled-surface integral
equations for TE polarized wave are,

1

2
E1ðxÞ ¼ EincðxÞ þ

I
–S

�G1ðx; x0Þ
oE1ðx0Þ

on0

þ oG1ðx; x0Þ
on0

E1ðx; x0Þds0;

1

2
E2ðxÞ ¼

I
–S

G2ðx; x0Þ
oE2ðx0Þ

on0
� oG2ðx; x0Þ

on0
E2ðx; x0Þds0;

ð1Þ

where the subscripts 1 and 2 referred to the homogeneous
dielectric media 1 and 2, Einc the incident field, the normal
derivative over n 0 pointing from medium 2 to 1, and the
slash on S denotes the principle Cauchy integral. G1,2 are
the respective Green functions in the medium 1 and 2 here.
With the continuity of the field and its normal derivative on
the boundary, namely, E1 = E2 and on0E1 ¼ gon0E1 (g = 1
for TE polarization and g = e1/e2 for TM wave H, e is
the electric permittivity; throughout this paper only TE
wave with constant vacuum magnetic permeability is con-
sidered), Eq. (1) becomes the following two N · N matrix
equations by ‘‘point matching’’ method:
Fig. 1. The scattering field (normalized to incident TE wave) inside a
dielectric circular cylinder along the cut of diameter, with radius a = 0.1k
and relative electric permittivity er = 9; the simple-line stands for
analytical solution, square-line for solution from coupled integrals
equation, and cross-line for solution from the single integral Eq. (5)
developed here.
1

2
½EðxÞ� ¼ �½G1ðx; x0Þ�½on0Eðx0Þ� þ ½on0G1ðx; x0Þ�½Eðx0Þ�Ds

þ ½EincðxÞ�;
1

2
½EðxÞ� ¼ ½G2ðx; x0Þ�½on0Eðx0Þ� � ½on0G2ðx; x0Þ�½Eðx0Þ�Ds;

ð2Þ
where we have chosen N partitions, with x = x1, . . . ,xN, on
the boundary and the surface length element is Ds. The
diagonal elements on0G1ðx0; x0Þ ¼ on0G2ðx0; x0Þ ¼ 0 are ex-
cluded from the matrices on0G1;2 as a fact of the principle
Cauchy integral. In addition, the respective diagonal ele-
ments of G1,2 are of the same values as a result from the
analytic infinitesimal integration of Hankel function on
Ds [14]. Consider the symmetric Green function of its two
variables, i.e., G(x,x 0) = G(x 0,x), along with the integral
path of circular cylinder, we found an important property
of G1,2 and on0G1;2: they are indeed the circulant matrices,
which satisfy the definition,

A ¼

a1 a2 a3 � � � aN�1 aN

aN a1 a2 aN�2 aN�1

aN�1 aN a1
..
.

..

.
a1 a2

a2 a3 a4 � � � aN a1

2
66666664

3
77777775
: ð3Þ

Such a matrix has its next row elements shifted in a cir-
cular order while keeping the diagonal elements the same
values. A significant feature of circulant matrices is: for
any two circulant matrices A, B they obey the commutation
rule, i.e., AB = BA [15]. With this nice property, we can
readily reduce the coupled equations in Eq. (2) to a single
linear algebra equation by multiplying G2 and G1 to its
upper and lower equations and add them up to eliminate
the undesired on0E term. Thus, we have,

1

2
½ðG1 þG2Þ�½E� ¼ f½G2�½on0G1� � ½G1�½on0G2�g½E�Dsþ ½G2�½Einc�:

ð4Þ

Or, Eq. (4) can be recast into the integral form,
I

S0

I
S00

G2ðx; x0Þ
oG1ðx; x00Þ

on00
� G1ðx; x0Þ

oG2ðx; x00Þ
on00

� �
Eðx00Þds00ds0

¼
I

S0
G2ðx; x0ÞEincðx0Þds0; ð5Þ

where we have included the diagonal elements with the val-
ues +1/(2Dsk) and �1/(2Dsk) into the matrices on00G2 and
on00G1, respectively.

The verification of the validity of Eq. (4) or (5) is con-
firmed with numerical calculation. The results compared
with coupled equations method and analytical solutions
are shown in Fig. 1. We further apply the commutative
property of Green matrices to dielectric-coated cylinders,
where no analytical solution has been found. Before that,
an extensive study with Eq. (5) for non-circular scattering
has practical interest for applications. Since the integral
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paths are not perfectly circular, the corresponding Green
function matrices are not circulant matrices. As a result,
the Green matrices would violate the commutation rule,
i.e., AB 5 BA, so that Eq. (5) no longer holds. However,
if we choose a shape slightly deviated from circle, for exam-
ple, an ellipse with small eccentricity, then AB � BA.
Numerical simulation shows that, in the sub-wavelength
limit (if the major axis of ellipse a is around or less than
one tenth of the wavelength k, i.e., a 6 0.1k), Eq. (5) is still
a good approximation even at large eccentricity. These
results are given in Fig. 2. We can see that the maximum
error is reasonably small, only 2.13% at the eccentricity
equal to 0.8.

Next, we use the non-trivial commutative property of
circulant Green matrices to simplify the scattering prob-
lems of dielectric-coated cylinders. Consider the configura-
tion illustrated in Fig. 3, a circular cylinder with refractive
index n3 is covered with a dielectric coating of refractive
index n2, illuminated in the medium with refractive index
n1. In the integral approach, it would require four unknown
functions because we have two boundaries S1 and S2 sepa-
rating the incident medium with coating and the coating
with cylinder, respectively. In Maystre’s work [16], an iter-
ative relation between single jump functions, or the
surfaces currents, on different layers was developed. Never-
theless, that formula is only valid for the case of vanished
inner field, i.e., for cylinder considered here, the core mate-
rial should be perfect conductor. Another similar treatment
in operator form for non-vanished inner field still requires
two integral equations [17]; to obtain single matrix equa-
tion, the inversion of the Green matrices in steps of reduc-
tion may cause numerical stability problems [18]. Here we
use the same technique in deriving Eq. (4) to lead the reduc-
tion of four unknown functions: E1 and on0E1 on boundary
S1, and E2 and on0E2 on boundary S2. The detailed deriva-
tion and the recast of integral form are skipped here. After
Fig. 2. The normalized scattering field (in units of 103) by an elliptic dielectric c
b = 0.06k and relative electric permittivity er = 9, at 45� incidence angle respec
x = 103k and vertical distributions along the y-axis at angle a of range ±45�
solution from coupled integrals equation, cross-line from the single integral Eq
relative to square-line defined as error = jcross-squarej/jsquarej in percentage.
a lengthy calculation, we arrive at the following matrix
equation with only a single unknown function E1.

½fðG221G212 �G211G222ÞG111oG212

þG111G212ðG211o�G222 �G221oG212ÞgfðG221G211

�G212G221ÞG322oG221 þG322G221ðG212oG221

�G222oþG211Þg þ fðG221G211 �G212G221Þ
� ðG222oþG322 �G322o�G222Þ þG322G221ðG222oG212

�G212o�G222ÞgfðG221G212 �G211G222ÞðG111oþG211

�G211o�G111Þ þG111G212ðG211oG221

�G221oþG211Þg�½E1�Ds1

¼ ½fðG221G211 �G212G221ÞðG222oþG322

�G322o�G222Þ þG322G221ðG222oG212

�G212o�G222ÞgðG221G212 �G211G222ÞG211�½Einc�; ð6Þ
where the Green functions in media 1, 2, and 3 and their
normal derivatives on S1 and S2 are denoted as
Gijk ¼ Giðxj; x0kÞ, oGijk ¼ oGiðxj; x0kÞ=on0k, with i = 1, 2, 3; j,
k = 1 and 2, and o+Gijk and o�Gijk represent their diagonal
elements with values of +1/(2Dsk) and �1/(2Dsk), respec-
tively. The numerical results for scattering fields obtained
from Eq. (6) are consistent with those from four coupled
integral equations, as indicated in Fig. 3.

In conclusion, we have discovered the circulant Green
functions and developed new single surface integral equa-
tions for 2D circular dielectric cylinders. Instead of using
equivalent principle, our integrands contain the real fields
only, and they are derived directly without any assumption.
Therefore, no extra conversion is needed in our scheme to
obtain the fields in comparison with the equivalent currents
method. It works equally well for quasi-circular cylinders
in the sub-wavelength limit. And we also succeed in reduc-
ing four integrals into one for cylinders with dielectric coat-
ylinder with eccentricity e = 0.8, long major axis a = 0.1k, short major axis
t to the long major axis. The fields are calculated at a horizontal distance
with respect to x-axis from the center of cylinder. The square-line is the
. (5) developed here, and the simple-line is the error function for cross-line



Fig. 3. The normalized scattering fields by a circular dielectric-coated cylinder, calculated at the same distances as in Fig. 2. The refractive indexes of the
incident medium, coating, and the core are n1 = 1, n2 = 2, n3 = 3, with corresponding relative electric permittivity e1 = 1, e2 = 4, and e3 = 9; the inner and
outer radii of the cylinder are a = 2k, b = 2.5k, respectively. The square-line is the solution from four coupled integrals equation with two boundary
conditions, and the cross-line is the solution from the single integral Eq. (6) developed here.
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ing. In future applications, our approach may further be
implemented to multi-concentric circular layered media,
which would reduce at least half of the unknowns on the
integral boundaries. Moreover, our results can be specifi-
cally extended to 3D spherical scattering. For the sphere
object only, the field can be generally defined into TE
and TM polarizations due to the uniqueness of normal vec-
tor on each surface element [19]. Also the circulant Green
matrices still hold because of the permutation of surface
elements in 3D Green function on the sphere. With the
same spirit, the reducing procedure in above coated cylin-
ders can apply to spherically layered media as well.
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