Full-color transflective cholesteric LCD with image-enhanced reflector
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1 Introduction Bright State

A reflective cholesteric liquid-crystal display (Ch-LCD)! is
a bistable device which consumes less power than conven-
tional general reflective STN or TFT displays. Due to its
bistability, only the refreshing of the screen requires a driv-
ing voltage. Thus, the Ch-LCD is a strong contender for
electronic newspapers and books.
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Several methods have been proposed to demonstrate
a full-color Ch-LCD, such as stacking cells with primary \\ T Glass
RGB colors,? exposing different UV intensities to generate : ITO
different pitch lengths,3 and doping different twist agents to Alignment layer
create RGB color pixels.4 Although these methods improve ! \
the display characteristics, the legibility of a Ch-LCD remains %
an issue without adequate ambient light.

For a display to be useable from dark to bright-sun-
light conditions, a transflective display is a good 0ption.5 In
a transflective STN- or TFT-LCD, each pixel is divided into
transmissive and reflective subpixels. However, such a split b | |
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shown in the right part of Fig5~ 1(a) and (b), both reflective FIGURE 1 — Operation principle of a reflective/transmissive cholesteric
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FIGURE 2 — Schematic plot of the proposed full-color transflective
cholesteric LCD with an IER and wideband reflective cholesteric liquid
crystal. (a) Bright and (b) dark state.

lack a dark state. In this paper, we demonstrate a simple
transflective Ch-LCD that can display full-color images.

2  Full-color transflective cholesteric LCDs

To achieve a full-color display, we deceided to use a broad-
band reflective Ch-LCD. The reflection bandwidth of a
cholesteric LCD is proportional to the birefringence (An)
and pitch length (P), as AA = pAn. Therefore, a high-bire-
fringence LC was used to widen the reflective bandwidth.
Our approach was to achieve a broad reflection band cover-
ing the entire visible spectrum, from 450 to 650 nm. Under
such conditions, a black-and-white cholesteric display can
be realized. Since the reflected light is white, the conven-
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FIGURE 3 — Cross-sectional plot of the transflective Ch-LCD with
image-enhanced reflector (IER) and light control film (LCF).

tional color filters can be patterned to obtain full-color dis-
plays.6

In this novel full-color transflective Ch-LCD, each
pixel is divided into reflective and transmissive parts. In the
transmissive part, an image-enhanced reflector (IER)7 is
positioned to reflect the backlight into the reflection pixels.
This IER design works equally well for both narrow and
broadband cholesteric displays. Figure 2 illustrates the
operation mechanisms of the new transflective cholesteric
display. In Fig. 2(a), unpolarized ambient light is incident to
the reflective pixels. We assumed that the cholesteric layer
is right-handed so that it reflects the right-hand (R) circu-
larly polarized light and transmits the left-handed (L) part.
The transmitted light L is absorbed by the absorption layer.
As aresult, a bright state was obtained. On the transmission
channel from the backlight, the R light is reflected back and
L is transmitted to impinge onto the IER. Upon reflection,
the L light becomes R light and is reflected by the
cholesteric LC layer to the viewer. Again, a bright state is
achieved. The same bright state for both reflective and
transmissive channels is critically important, as in a not-too-
dark ambient, the backlight may be needed to enhance
readability.

However, the specular reflection of the Ch-LCD re-
flects the oblique incident light to its corresponding reflec-
tion angle, as illustrated in Fig. 2. Consequently, the viewers
cannot perceive the brightest image near the normal direc-
tion, which is the typical viewing region for common view-
ers. To further improve the image quality of the novel
Ch-LCD, we propose to use a “light control film” to collect
and redirect the oblique light into a lower-angle viewing re-
gion to increase the brightness, as illustrated in Fig. 3. The
light control film can be made by multi-directional asym-
metrical microlens arrays&9 or random gra’tings.10 There-
fore, both reflective and transmissive subpixels exhibit a
high optical efficiency in the normal viewing region.
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FIGURE 4 — Flow of the fabrication process of a prototype IER.

3 Fabrication of image-enhanced reflector

Many methods have been developed to fabricate a biprism
structure. One of the commonly used methods is the pho-
toresist thermal-melting process. However, the approach is
limited to a small linear dynamic range. Another method
used to fabricate the image-enhanced reflector is to use a
halftone mask exposed by an excimer laser. Excimer-laser
ablation is a rapid and effective way for micromachining a
surface relief onto a substrate material such as a photoresist.
Besides, a halftone mask can modulate the incident light
into gray levels. Therefore, by designing the gray levels of
the structure and controlling the laser energy, a biprism
structure can be obtained. The detailed steps of the process
are shown in Fig. 4. First, the photoresist AZP4620 was
coated on the glass substrate. Second, the IER structure was
fabricated by using a halftone mask equipped with excimer
laser micromachining. Then, an aluminum film was evapo-
rated. Finally, the Allayer outside the IER was etched off by
using a wet-etching process.
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FIGURE 5 — Simulation results of the birefringence-dependent reflection
bandwidth of a Ch-LCD.
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FIGURE 6 — (a) The experimental setup and (b) the measured output
light efficiency of the IER function for a Ch-LCD.

4  Simulation and experimental results

By using the finite-element method (FEM),!! the relation-
ship between the birefringence and reflection bandwidths
of a cholesteric display was simulated, as shown in Fig. 5.
The incident light was unpolarized and the LC layer was a
right-handed circular cholesteric. The calculated An values
used were 0.2, 0.6, and 1.0, shown as dashed, plus-dashed,
and solid lines, respectively. Obviously, when the birefrin-
gence is larger than 0.6, the reflection bandwidth covers
almost the entire visible spectrum with 50% reflectivity that
can display a black-and-white image. By implementing RGB
color filters on the display, a full-color cholesteric LCD with
memory effect can be demonstrated.

To examine the performance of IER on a Ch-LCD,
two linearly polarized He—Ne green lasers (A = 543 nm)
were used to mimic the backlight and ambient light, respec-
tively, and to illuminate on a monochrome Ch-LC cell
whose reflective bandwidth ranges from 530 to 590 nm, as
shown in Fig. 6(a). An aluminum reflector which acts as an
IER was set behind the Ch-LCD to reflect the transmitted
light to the Ch-LCD. The output light efficiency of the
transmissive and reflective portions was measured by the
detectors at a different illumination angle 6, and the results
are shown in Fig. 6(b). From Fig. 6(b), the output light
efficiency of the bright and dark states for the reflective and
transmissive regions is similar. With different illumination
angles for green lasers, both regions have an output light
efficiency higher than 40% for the bright state and lower
than 5% for the dark state. Therefore, by building IER
above the transmissive portion, the transflective Ch-LCD
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FIGURE 7 — (a) Top view and (b) literal view of the fabricated
image-enhanced reflector measured by using SEM and AFM.

shows a decent quality image for both reflective and trans-
missive modes.
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FIGURE 8 — (a) The schematic plot of a simple test sample of
monochrome Ch-LCD with a conventional backlight and (b) the demo
photos of the same color images for both reflective (left part) and
transmissive (right part) modes.
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The halftone mask technology equipped with excimer-
laser micromachining was used to fabricate the prototype
IER structure on a glass substrate. The fabricated structure
was measured by using scanning electron microscopy
(SEM) and atomic force microscopy (AFM), as shown in
Figs. 7(a) and 7(b), respectively. From the results, we suc-
cessfully demonstrated that the IER structure can be easily
fabricated by a conventional well-developed process. In a
completed device, the image-enhanced reflector can be
integrated into the full-color Ch-LCD.

Prior to examining the IER function, we prepared a
simple monochrome Ch-LCD test sample with a conven-
tional backlight, as illustrated in Fig. 8(a). The images of the
reflective (left part) and transmissive (right part) modes are
shown in Fig. 8(b). The demo photos successfully demon-
strate that this novel transflective Ch-LCD can display the
same image color in any ambient condition. Accordingly, a
Ch-LCD, using high-birefringence LC and an image-enhanced
reflector, is anticipated to yield high-brightness full-color
images which can be read in any ambience.

5 Conclusions

The proposed novel cholesteric LCD can easily display full-
color images by using high birefringence LC material with
a conventional color-filter process. It also displays the same
color images in both the reflective and transmissive modes,
and maintains good readability in any ambience due to the
IER structure that allows the paths of the backlight to be
similar to that of the ambient light. Additionally, the display
has low power consumption because of the bistability of Ch-LC
and high brightness due to the elimination of the polarizers.
The IER structure fabricated by using a halftone mask and
excimer-laser micromachining was successfully demon-
strated. The fabrication processes for this full-color trans-
flective Ch-LCD are compatible with that of conventional
LCDs. Furthermore, the light control films can be lami-
nated onto the top surface of the proposed display to
enhance the image quality for both reflective and transmis-
sive modes. The results demonstrate that a full-color image
with excellent legibility under both bright and dark ambient
conditions for a Ch-LCD can be achieved.
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