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Abstract: Vehicle displays are becoming more integrated into our daily lives. Achieving a premium
driving experience demands the display panel to have high-resolution density and sufficient bright-
ness, particularly when exposed to intense ambient light, as direct sunlight can obscure the displayed
images. Combining Barten’s model and diffraction theory, the performance of both infotainment dis-
plays and head-up displays (HUDs) is evaluated. For infotainment displays, over 800 nit brightness is
essential for the driver to discern 55 pixel-per-degree (PPD) patterns under direct sunlight. For HUDs,
a delicate balance between resolution density, brightness, transparency, and image quality must be
exercised. By slightly reducing the resolution density to 50 PPD, the used transparent micro-LED
panel can concurrently achieve a reduced background image blur, low required display brightness
(~4000 nits), and high background transmittance (~90%).

Keywords: vehicle display; micro-LED; liquid crystal display; transparent display; contrast sensitivity

1. Introduction

Different from indoor displays, vehicle displays often encounter strong ambient light in
the daytime [1]. Two types of displays are commonly integrated into a vehicle: informative
displays and transparent head-up displays (HUDs). An infotainment display combines
both information and entertainment features in a single screen [2]. It is commonly integrated
with a dashboard to function as a digital instrument cluster, such as a speedometer, and to
display global positioning system (GPS) images. Among different vehicle displays, liquid
crystal displays (LCDs) and organic light-emitting diode (OLED) displays are two currently
dominating technologies. LCD has merits in high-temperature tolerance, long lifetime, and
low-cost [3], while tandem OLED [4,5] is a strong contender due to its wide color gamut,
good flexibility, and high contrast ratio to avoid the postcard effect at night [6]. At Display
Week 2023, leading vehicle display companies such as BOE demonstrated a 21.6” curved
mini-LED (mLED) backlit LCD prototype with 786 dimming zones and Tianma showcased
a 9.94” OLED trifold screen. However, for traditional LCDs, the image content may be
washed out by strong ambient light due to the relatively low CR (<5000:1) and limited
peak brightness, while OLED materials are still facing thermal instability [7]. An mLED
backlit LCD can achieve a comparable CR to OLED [8], while further reducing the halo
effect [2,9,10] and increasing the optical efficiency from LCD is still challenging.

Micro-LED (µLED) and mLED (without LCD) are emerging as next-generation in-
fotainment displays due to their ultra-high peak brightness, excellent dark state, long
lifetime, good flexibility, wide color gamut, and ultrafast response time [11–14]. Especially
for µLEDs, the small aperture ratio (usually ~1%; the remaining 99% of the area is filled
with black matrices) can further reduce the ambient light reflectance from the bottom metal
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electrode. As a result, µLED will be a strong contender for automotive displays once its
manufacturing processes become more mature.

On the other hand, a HUD allows users to view digital information without changing
their natural line of sight [15]. It is playing an increasingly important role in automotive
displays because the drivers can receive information directly from the windshield. To
deliver a clear display image with plain environmental conditions, HUD should exhibit high
transparency (>70%), ultra-high brightness, high-resolution density (~60 pixels per degree
(PPD)), and low diffraction [16]. There are two main types of HUDs: projection [17] and flat
panel [18]. The former has several demerits in terms of high optical loss, small eyebox, and
strong color dispersion. For the flat-panel type, the light sources are directly embedded
under the windshield. Recently, the direct view µLED has been gaining momentum owing
to its high brightness, small mesa size, very wide temperature range, and exceedingly long
lifetime [19,20]. At Display Week 2023, PlayNitride demonstrated a 9.38” 114 PPI µLED
panel with 65% transparency. AUO also introduced a 5000 nit 13.5” µLED prototype with
163 PPI and 55% transparency.

However, very few studies investigate the human recognizability of vehicle display
panels under strong ambient light. In this paper, we systematically analyze LCD and µLED
under strong ambient light. Firstly, we analyze the performance of different infotainment
displays under different ambient lighting conditions based on Barten’s model. Then, we
validate the calculated data with visual tests. Afterward, a transparent display model
is built based on diffraction theory and photopic function to balance the transmittance
of environmental light and required display brightness. Finally, multi-scale structure
similarity is analyzed by considering high-order diffraction to determine the image quality
and optimize the aperture ratio.

2. Infotainment Display under Different Ambient Light
2.1. Contrast Sensitivity and Barten’s Model

Contrast sensitivity (CS) is a measure of the human eye’s ability to distinguish si-
nusoidal patterns at each spatial frequency, and the contrast sensitivity function (CSF)
is defined as the reciprocal of the minimum contrast of a sinusoidal grating that can be
detected by the human eye at a specific spatial frequency [21,22], as illustrated in Figure 1.
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The CSF is correlated with several factors, such as field of view (FoV), resolution den-
sity of the display panel, spatial frequency, brightness, and ambient light intensity [23–25].
In 1999, Barten developed a simplified physical model for the CSF of the human eye using
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massive visual tests [26]. Based on empirically fitting the psychophysical data, Barten’s
model has the following form:

CSF( f ) = a f e−b f
(

1 + ceb f
)0.5

, (1)

where

a =

[
540
(
1 + 0.7

L
)−0.2

]
[1 +

12
(

1+ f
3

)−2

w ]

, b = 0.3
(

1 +
100
L

)0.15
, c = 0.06.

In Equation (1), f is the spatial frequency of the stimulus, w is the FoV of the stimulus
in degrees, and L is the average luminance of the stimulus in cd/m2. The reciprocal of the
contrast (RoC) under a specific ambient light can be expressed as:

RoC =
1

Contrast
=

Lmax + Lmin + 2R× Ia/π

Lmax − Lmin
, (2)

where Ia (unit: lux) is the ambient light illuminance and R is the surface reflectance. The hu-
man eye recognition threshold can be calculated using the intersection of Equations (1) and (2).

2.2. LCD and µLED Infotainment Displays under Different Ambient Conditions

For simplicity, we consider two display panels with the same resolution density: (1) a
400 nit LCD panel with a 0.5 nit light leakage at a dark state and (2) a 1000 nit µLED with a
perfect dark state. In a perfect dark room, the calculated RoC is 1.002 for the LCD panel and
1 for the µLED; these two values are very close to each other. The calculated CSF results are
plotted in Figure 2a. The small contrast sensitivity difference between LCD and µLED is
due to their average luminance difference. To visualize the difference in and readability
of the patterns on these two screens, we focus on the spatial frequency ranging from 55 to
60 lines/deg. The dashed line in Figure 2b indicates the contrast sensitivity threshold of the
human eye, and the patterns will not be readable if the curve is below this line. In this case,
LCD and µLED share the same threshold since the contrast sensitivity threshold difference
is very small. From Figure 2b, the pattern readability threshold is 56 lines/deg for LCD and
58 lines/deg for µLED. Both threshold values are close to human visual acuity (60 PPD).
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The ambient light in a vehicle could vary from starlight to sunlight. The SAE 1757
standard [27] gives a good representative illumination and measurement during daytime in
two typical cases: (1) Diffuse daylight with an illuminance of 5 k lux and (2) direct sunlight
with 45 k lux. If we assume the surface reflectivity of the anti-reflection (AR) coating is
1.5% for both LCD and µLED panels, then the ambient light luminance will be 23.87 nits
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for diffuse daylight and 214.86 nits for direct sunlight. The ambient contrast ratio (ACR)
of LCD and µLED will be 17.39:1 and 42.89:1 under diffuse daylight, respectively. On the
other hand, the ACR of LCD and µLED will be reduced to 2.86:1 and 5.65:1 under direct
sunlight. According to the ISO15008 criteria that ACR should be≥2:1 under direct sunlight,
both displays can fulfill this requirement.

Based on Equation (2), the calculated RoC results are: RoCdiffuse-LCD = 1.12,
RoCdiffuse-µLED = 1.05, RoCdirect-LCD = 2.08, and RoCdirect-µLED = 1.43. Under the diffuse
sunlight shown in Figure 3a, the recognition threshold is 55.4 and 57.8 lines/deg for LCD
and µLED, respectively. Figure 3b indicates that the threshold is reduced to 52.1 lines/deg
for LCD and 56.0 lines/deg for µLED. Several conclusions can be drawn, as illustrated in
Figures 2 and 3 and Equation (2): (1) Increasing the ambient light brightness continuously
reduces the CS recognition threshold, especially for LCD due to its lower peak brightness,
making the patterns more difficult to recognize. (2) Both CSFs slightly shift with increasing
panel luminance. (3) The difference in the CS recognition threshold is mainly dominated
by the high peak brightness of µLED instead of the light leakage of the LCD. Therefore,
based on the above conclusions, we calculated the PPD as a function of display brightness
under different ambient lighting conditions, as shown in Figure 3c. As the ambient light
brightness increases, the patterns are more difficult to distinguish. As the reflected ambient
light increases to 250 nits, the display panel with over 800 nits is required for the driver to
distinguish the 55 PPD patterns.
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2.3. Contrast Sensitivity Visual Test

Barton’s function was derived based on massive eye exam data obtained in lab condi-
tions. In that case, observers had sufficient time to recognize the patterns. In realistic cases,
the driving condition is more complicated than lab testing. For example, the pattern on the
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screen should be recognized by the driver in a very short period (~1 s) for driving safety,
especially when eyesight saccades from bright surroundings to the screen. Therefore, we
designed a subjective experimental comparison between two same patterns with different
brightness on a single commercial 4 k 15.6” OLED laptop panel with gamma = 2.2 curves
(Figure 4a). As shown in Figure 4b,c, on the left screen (representing µLED), the dark state
and bright state luminance were set at 0 (gray level = 0) and 356 nits (gray level = 255),
respectively. On the right screen (representing LCD), the dark state and bright state lumi-
nance were set at 0.55 nits (gray level = 11) and 142 nits (gray level = 168), respectively. The
background gray level in the dark room and the bright room was fixed at 25 (1.97 nits) and
120 (67.8 nits), respectively, for the eye’s preference. The bright room test took place in an
environment of ~320 lux ambient light. An additional white lamp was applied to provide
~49 nit reflectance from the screen, and its spot size exactly overlapped with the testing
pattern. A total of five testers at ages ranging from 23 to 31 with normal or corrected vision
were included. As indicated in Table 1, the resolution density was controlled by adjusting
the tester’s distance to the screen. The pattern size was also changed with distance to keep
the FoV at 10◦.
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Table 1. Varying PPD as a function of distance under a fixed FoV.

PPD Distance to Screen (cm) Pattern Size (cm)

60 27.5 5.0

55 24.7 4.3

50 22.0 3.8

45 18.7 3.3

40 15.5 2.7

According to our simulation results shown in Figure 5a, the recognition threshold is
51.5 and 56 for LCD and µLED in the dark room, respectively. The experimental results in
Figure 5b show that the patterns start to be unreadable at 45 and 40 lines/deg for the left
(µLED) and right (LCD) screens, respectively. At 55 lines/deg for µLED and 50 lines/deg
for LCD, the patterns are completely indistinguishable, which is very close to our simulation
results.
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room.

On the other hand, the visual tests performed, as shown in Figure 5b, cannot represent
realistic driving conditions because testers have sufficient time to recognize the patterns on
the screen. As previously mentioned, drivers cannot stare at the screen for more than 1 s to
ensure driving safety. Therefore, in quick response tests, testers are required to watch the
night driving video provided by another panel, then rapidly move their sight to test patterns
and recognize it within 1 s. The test results are plotted in Figure 5c. The patterns start to be
unrecognizable at 27.5 and 22.5 lines/deg for µLED and LCD, respectively. At 45 lines/deg
for µLED and 40 lines/deg for LCD, the patterns are completely indistinguishable. A
significant degradation in performance is found for all the testers.

The bright room tests also exhibit similar results. As shown in Figure 5d, the recog-
nition threshold is 49 and 54 lines/deg for LCD and µLED, respectively. On the other
hand, according to Figure 5e,f, the recognition threshold is reduced from 50 lines/deg to
45 lines/deg for both patterns. Compared to the dark room tests, the difference is relatively
small, which could be attributed to a small change in the pupil.

3. Transparent µLED for Head-Up Displays
3.1. Transmittance of a Transparent µLED

As Figure 6a indicates, the transmittance of a transparent µLED can be calculated by
considering several components: (1) environmental light, which can be simplified to a D65
source, (2) surface reflectance from the µLED panel, (3) diffraction due to periodic µLED
structure, and (4) the image in the human eye after considering the photopic and scotopic
functions. The wavelength independent average transmittance for daylight (TDay) and
night (TNight) can be calculated from Equations (3) and (4):

TDay =

∫ 780 nm
380 nm D(λ)× P(λ)× TSur f (λ)

2 × TLED(λ)dλ∫ 780 nm
380 nm D(λ)× P(λ)dλ

, (3)

TNight =

∫ 780 nm
380 nm D(λ)× S(λ)× TSur f (λ)

2 × TLED(λ)dλ∫ 780 nm
380 nm D(λ)× S(λ)dλ

, (4)
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where D(λ), P(λ), and S(λ) represent the normalized D65, photopic, and scotopic spectrum,
respectively. TSurf = 0.5 × TTE + 0.5 × TTM is the surface reflectance from the AR coating
and TLED is the effective transmittance from the periodic µLED panel.
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Figure 6b shows an MgF2 AR coating (refractive index 1.377) of a 30◦-tilted windshield
with a sealing polymer, which has a refractive index of 1.5. The calculated reflectance is
consistently lower than 2.5% from 380 nm to 780 nm (Figure 6c). For a typical vehicle, the
distance from the driver to the windshield is approximately 19 inches (~48 cm). To achieve
60 PPD, the full-color pixel size is approximately 143 µm. Figure 6d shows the RGB square
opaque µLEDs with a pitch size of a2 in a 143 µm full-color µLED pixel, and the aperture
ratio is defined as the transparent area divided by the total area. Considering a panel with
3840 × 2160 pixels, the total size is Lx = 55-cm × Ly = 31-cm.

Using the Fourier optics model for a transparent µLED from previous studies [28,29],
the 2D point spread function (PSF) of the panel for an object at infinite distance can be
calculated as:

h
(

fx, fy
)

∝
∣∣[F{t0(ξ, η)} × comb

(
Lx0 fx, Ly0 fy

)]
⊗ sinc

(
Lx fx, Ly fy

)∣∣2, (5)

where fx and fy are the spatial frequency in the x and y direction, respectively, and Lx0
and Ly0 are the size of a subpixel. For a 60 PPD full-color display panel, Lx0 = 47 µm and
Ly0 = 143 µm.

If we consider the angular resolution of human normal vision acuity 20/20 to be
1 arcmin, then its corresponding length on the retina is 5 µm [28]. Therefore, on the imaging
plane (retina), the effective light transmittance is the light received within 5 µm at the
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imaging plane; otherwise, these rays are formed into stray light, which, in turn, degrades
the image quality. The effective transmittance of the panel TLED can be calculated as:

TLED(λ) =

∫ 2π
0

∫ 5
0 |h(λ)|

2drdθ∫ 2π
0

∫ 5
0 |h0(λ)|2drdθ

, (6)

where h and h0 represent the 2D PSF for a specific aperture ratio and for the unity aperture
ratio, respectively.

Figure 7a indicates that TLED remains constant for a 20 µm× 20 µm LED mesa because
the diffraction order spacing is much larger than the human eye’s angular resolution,
which is consistent with previous studies [28,29]. For a 143 µm pixel size, the spacing
is ~65 µm for green light (λ = 550 nm), which is much larger than the distinguishable
threshold (5 µm); therefore, only the wavelength-independent zeroth-order diffraction can
be considered as the effective transmittance after diffraction in our case. On the other hand,
transmittance increases continuously with the aperture ratio, as depicted in Figure 7b. From
the simulation, we can notice that the transmittance is almost proportional to the square of
the aperture ratio. This can be validated by calculating the zeroth-order diffraction intensity.
For each subpixel with a mesa size of a2, the aperture function can be expressed as:

t(ξ, η) = Rect(ξ/Lx0)× Rect
(
η/Ly0

)
− Rect(ξ/a)× Rect(η/a) (7)
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The corresponding PSF is:

h
(

fx, fy
)

∝
∣∣∣Lx0Ly0 × sinc( fxLx0)× sinc

(
fyLy0

)
− a2 × sinc( fxa)× sinc

(
fya
)∣∣∣ (8)

Since only the zeroth-order diffraction is considered, fx and fy both approach zero,

so that the transmitted power is proportional to
(

Lx0Ly0 − a2)2, which is the square of
the aperture ratio. As a result, to achieve 70% transmittance, the corresponding aperture
ratio should be ~84.5% for the 143 µm pixel size, indicating that the mesa size should be
<32.5 µm.

3.2. Brightness Requirement for a Transparent µLED

For µLED based HUDs, the most challenging part is to balance the trade-off be-
tween transparency, resolution density, and brightness. Reducing µLED mesa size helps
improve transparency, but the brightness is reduced due to a lower external quantum
efficiency [30–32]. On the other hand, for a constant µLED mesa size, increasing µLED
pixel size will increase the transparency of the panel due to the increased aperture ratio. In
this case, the screen resolution density, and the eye recognition threshold decrease, resulting
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in a decreased required panel brightness. Similar to Equation (2), the ambient RoC of a
transparent display can be calculated as:

RoC =
L + 2La × T

L
, (9)

where La is the ambient light luminance. Under full daylight, the environment brightness
is approximately La = 6000 nits (or ~20,000 lux) [11].

Like Figure 3d, the human eye’s recognition threshold can be calculated as a function of
mesa size and display brightness by combining Equation (9) with Barten’s model. Figure 8a
indicates that it is difficult to achieve 60 PPD under such strong ambient conditions. In
addition, a smaller mesa size results in a higher transparency, which increases the eye
recognition threshold. For example, a ~4500 nit display is required to achieve 50 PPD for a
10 µm mesa LED, while only ~2300 nits is required for LEDs with a 45 µm mesa. Since it
is difficult to perfectly match the human visual acuity of 60 PPD, we slightly reduce the
resolution requirement to 55 PPD and 50 PPD, corresponding to a pixel size of 157 µm and
173 µm, respectively. The required brightness and transmittance as a function of mesa size
are recalculated and shown in Figure 8b. By decreasing the human recognition threshold
from 55 PPD to 50 PPD, the required brightness decreases significantly from the range of
~10,000 nits to ~4000 nits. Simultaneously, transmittance increases due to a higher aperture
ratio. To keep a 70% transmittance, the maximum mesa size of the µLED increases from
~35 µm to ~40 µm. Therefore, slightly reducing the display resolution can significantly
reduce the demand for the display and increase the design freedom. Overall, 50 PPD
µLEDs with a 20 µm mesa size can achieve both high background transmittance (~90%)
and low required display brightness (~4000 nits).
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Figure 8. (a) Human recognition threshold of a transparent display as a function of LED brightness
and mesa size under full daylight (~6000 nits) when pixel size = 143 µm. The horizontal dashed line
indicates the recognition threshold of 50 PPD. The grey arrow indicates the mesa size increment.
(b) Required display brightness (blue) and transmittance (orange) as a function of mesa size under
full daylight. Solid lines: PPD = 50, pixel size = 157 µm; dashed lines: PPD = 55, pixel size = 173 µm.

3.3. Image Quality on Emissive Transparent Displays

In the above analysis, we only focus on zeroth-order diffraction and effective trans-
mittance within 1 arcmin on the human eye pupil. On the other hand, any higher-order
diffraction introduces imaging blurs, and the wavelength-dependent diffraction order spac-
ing causes dispersion. Figure 9 describes the simulated background image blur of the object,
which is placed 100 cm away from the windshield. As shown in Figure 9b,c, a large µLED
mesa (e.g., 70% aperture ratio or 45 µm mesa) can cause a stronger imaging blur (horizontal
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stripes on the window) and the existence of rainbow stripes, which can be suppressed
as the aperture ratio increases to 90%. Figure 9d shows that the calculated multi-scale
structure similarity [33] agrees with the previous analysis. It cannot perfectly achieve unity
because the image content is still slightly modified during image transformation even when
the aperture ratio is 100%.
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4. Conclusions

In conclusion, we calculated and analyzed the performance of both infotainment
displays and HUDs under different ambient lighting conditions for vehicle applications.
For infotainment displays, high brightness plays a much more significant role than dark-
state light leakage in determining the human recognition threshold under sunlight. In
other words, if mini-LED backlit LCD can provide a comparable brightness to µLED, the
eye recognition performance should be close to each other. The visual test agrees with
the simulation result. In addition, due to complicated driving conditions, fast recognition
of the pattern will be more difficult, especially during night driving. For HUDs at the
current stage, a 50 PPD (pixel size 173 µm) µLED panel with a 20 µm mesa size can achieve
reduced background image blur, lower required display brightness (~4000 nits), and higher
background transmittance (~90%) simultaneously.

Author Contributions: Methodology, Y.Q., Y.-H.H. and K.-H.L.; visual tests, Y.Q., E.-L.H. and Z.Y.;
simulations, Y.Q., Q.Y. and K.N.; writing—original draft preparation, Y.Q.; writing—review and
editing, S.-T.W.; supervision, S.-T.W. All authors have read and agreed to the published version of the
manuscript.
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