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Exploring the gap between thermal operations and enhanced thermal operations
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The gap between thermal operations (TO) and enhanced thermal operations (EnTO) is an open problem raised
in [Phys. Rev. Lett. 115, 210403 (2015)]. It originates from the limitations on coherence evolutions. Here we
solve this problem by analytically proving that a state transition induced by EnTO cannot be approximately
realized by TO. It confirms that TO and EnTO lead to different laws of state conversions. Our results can also
contribute to the study of the restrictions on coherence dynamics in quantum thermodynamics.
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I. INTRODUCTION

In the resource theory of quantum thermodynamics [1], the
main problem is to figure out the allowed state conversions un-
der a set of quantum operations known as thermal operations
(TO). A thermal operation is generally constructed as follows
[2–5]. A quantum system, previously isolated, is brought into
contact with a heat bath at a fixed inverse temperature β, and
then decoupled from it after some time.

As in Refs. [6,7], two important properties of TO are
identified: (i) the time-translation symmetry, and (ii) the
Gibbs-preserving property. Conversely, these two conditions
may not be sufficient for a quantum operation to be a thermal
operation. Thus the set of quantum operations which satisfy
these properties is defined as enhanced thermal operations
(EnTO) [6,7], or thermodynamic processes in some literature
[8]. By definition, TO is a subset of EnTO. Compared to TO,
EnTO is easier to be dealt with mathematically. Further, the
two properties in the definition of EnTO correspond to the
first and second laws of thermodynamics, respectively. Thus,
EnTO is widely employed to study the constraints on state
conversions.

When only population dynamics is concerned, it has been
proven that state conversions induced by TO are equivalent
to those induced by EnTO [3,9]. This elegant result leads
to the necessary and sufficient conditions on population dy-
namics under TO [3,4,9–11]. In general quantum systems,
where coherence between energy levels may exist, one should
also take into account the constraints on coherence evolution
[6,7,12–18]. A complete set of necessary and sufficient con-
ditions for arbitrary quantum state conversions under EnTO
are provided recently [8], while it is unclear whether these
conditions are sufficient for state conversion under TO.

Although EnTO and TO acting on qubit systems are
equivalent, it is not true for high-dimensional systems. In
Ref. [6], it is discovered that there are state conversions under
EnTO which cannot be realized exactly by TO. However, it
remains an open problem whether this gap can be closed
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approximately. This open problem attracts wide attentions
from researchers working on quantum thermodynamics and
resource theories [1]. Here we formally state two versions of
the closure conjecture.

Conjecture 1. (Closure conjecture, v1) For any enhanced
thermal operation EEnTO, there exists a thermal operation ETO,
such that the distance between these two operations is small,
i.e., |EEnTO − ETO| � ε.

Conjecture 2. (Closure conjecture, v2) For any given input
state ρ0, if the state conversion ρ0 → ρ is realizable by EnTO,
then there exists a state ρ ′ such that |ρ ′ − ρ| � ε and the
conversion ρ0 → ρ ′ is achievable by TO.

Apparently, Conjecture 1 implies Conjecture 2. Thus dis-
proof of Conjecture 2 is sufficient for disproving Conjecture 1.
In this paper, we will disprove Conjecture 2 with an analytical
counterexample, and hence confirm that TO and EnTO lead
to different laws of state conversions. Precisely, we consider a
qutrit system with Hamiltonian HS = ∑2

m=0 mh̄ω |m〉 〈m| and
in initial state |ψ0〉 = 1√

2
(|0〉 + |1〉), and a heat bath at a fixed

inverse temperature β. We will show that the state conversion
from ρ0 = |ψ0〉 〈ψ0| to

ρ = 1

2

⎛⎝ 1 − e−2β h̄ω
√

1 − e−2β h̄ω 0√
1 − e−2β h̄ω 1 0

0 0 e−2β h̄ω

⎞⎠ (1)

is realizable by EnTO. Then we will prove analytically that
any state ρ ′ satisfying |ρ ′ − ρ| � ε is not achievable by TO,
if the inverse temperature β is chosen such that 0 � e−β h̄ω �√

5−1
2 holds.

II. THERMAL OPERATIONS AND RELATED CONCEPTS

Here we briefly review some related concepts and results.
We consider a quantum system S with Hamiltonian HS and in
a state ρS . A thermal operation ETO on S is defined as [3]

ETO(ρS ) = TrR[U (ρS ⊗ γR)U †], (2)

where γR = e−βHR/Tr(e−βHR ) is the Gibbs state of the heat
bath R, HR is the Hamiltonian of R, β is the inverse
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temperature, and U is a joint unitary which preserves the total
energy, i.e., [U, HS + HR] = 0.

An enhanced thermal operation EEnTO on S is defined as
a quantum operation which satisfies both of the following
conditions [6]:

(i) Time-translation symmetric condition,

EEnTO(e−iHStρSeiHSt ) = e−iHStEEnTO(ρS )eiHSt ; (3)

(ii) Gibbs-preserving condition,

EEnTO(γS ) = γS. (4)

If a quantum operation belongs to TO, it satisfies these two
conditions [6]. However, the converse may not be true. Hence,
TO is a subset of EnTO.

Let p0 and p be the vectors of population distributions of
states ρ0 and ρ, respectively. Each element of the vector p
is pk = 〈k|ρ|k〉 (and similar for p0), where |k〉 are energetic
eigenstates of the system. The population dynamics induced
by an enhanced thermal operation EEnTO can be written as

ρ = EEnTO(ρ0) ⇒ p = Gp0. (5)

Here G is a matrix of transition probabilities Gk′k = pk′ |k =
〈k′|E (|k〉〈k|)|k′〉 from state |k〉 to |k′〉. From property (ii), the
population dynamics G induced by EnTO is a stochastic ma-
trix that preserves the Gibbs distribution. Such matrices, also
called the Gibbs-stochastic matrices, can be realized by TO
[3,9]. Hence, when only population dynamics is concerned,
TO is equivalent to EnTO.

As shown in Refs. [6,7], the coherence dynamics between
energy levels depends on both initial coherence of quantum
state and transition probabilities. For a quantum state ρ ex-
panded in its energy eigenbasis ρ = ∑

i, j ρi j |i〉〈 j|, (where
HS | j〉 = Ej | j〉) a mode of coherence is defined as an operator
ρ (ω) composed of coherence terms between degenerate gaps:

ρ (ω) =
∑

i, j:Ei−Ej=h̄ω

ρi j |i〉〈 j|. (6)

The output coherence term after the action of an enhanced
thermal operation is bounded as [6,7]

|ρi j | �
∑
c,d

′|ρ0,cd |√pi|c p j|d , (7)

where the primed sum
∑′ refers to the summation over the

indices c, d which satisfy Ec − Ed = Ei − Ej , and ρ0,cd =
〈c| ρ0 |d〉.

If ρ0 and ρ are qubit states, TO can saturate the bound in
Eq. (7). However, for higher dimension systems, there exist
situations where TO cannot achieve the bound in Eq. (7)
exactly, while EnTO can [6].

III. SETUP

In this paper, the main system we focus on is a three-
dimensional quantum system whose Hamiltonian reads

HS =
2∑

m=0

mh̄ω|m〉〈m|. (8)

The heat bath is at a fixed inverse temperature β. In the
following, we will label q ≡ e−β h̄ω.

(c)

(b) (a)

(f)

(d) (e)

FIG. 1. EnTO cone of the qutrit state |ψ0〉 = 1√
2
(|0〉 + |1〉). The

maximum value of |ρ01| is presented as the color bar (gray-scale bar).
Here the parameter q ≡ e−β h̄ω.

Because the main purpose of this paper is to disprove the
closure conjecture, a counterexample is sufficient. Thus in the
rest of the paper, we mainly consider the initial state |ψ0〉 =

1√
2
(|0〉 + |1〉), though most of our discussions can be applied

to general input states.
The set of states which can be obtained from a given

input state ρ via a set of operations X is called the X cone
of ρ, labeled as CX (ρ) := {ρ ′ : ρ ′ = E (ρ), E ∈ X }. The gap
between two sets of operations X1 and X2 can be indicated
from a gap between X1 cone and X2 cone of a given state. In
the following, we explicitly calculate the EnTO cone of the
state ρ0 = |ψ0〉 〈ψ0|, and show that the gap between CTO(ρ0)
and CEnTO(ρ0) is non-negligible.

From Eqs. (5) and (7), any state in the EnTO (or TO) cone
of ρ0 is in the following form:

ρ =
⎛⎝ p0 |ρ10|eiφ1 0

|ρ10|e−iφ1 p1 |ρ21|eiφ2

0 |ρ21|e−iφ2 1 − p0 − p1

⎞⎠. (9)

Further, all states in the above form are equivalent to states
with φ1 = φ2 = 0 by covariant unitary operators U (φ1, φ2) =
diag(e−iφ1 , 1, eiφ2 ). Therefore, the EnTO (or TO) cone of ρ0

is fully described by (p0, p1, |ρ10|, |ρ21|), and hence can be
presented in a four-dimensional parameter space. In the fol-
lowing, we will focus on the projections of the cones on the
three-dimensional parameter space (p0, p1, |ρ10|). Clearly, a
gap between the projections of cones indicates a gap between
the cones.

IV. THE GAP BETWEEN TO AND EnTO

A. EnTO cone

Here we analytically calculate the EnTO cone of the initial
state ρ0, and visualize it in the three-dimensional parameter
space spanned by (p0, p1, |ρ10|); see Fig. 1. The range of the
output populations is derived from the thermo-majorization
relation [3].

The maximum value of |ρ10| for given (p0, p1) is obtained
as follows. According to Eq. (7), we have |ρ10| � 1

2

√
G00G11.
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Thus the upper bound of |ρ10| reads

max 1
2

√
G00G11

s.t. Gγ = γ, Gp0 = p, GTI = I, Gi j ∈ [0, 1], (10)

where γ = (1, q, q2)T, p0 = ( 1
2 , 1

2 , 0)T, p = (p0, p1, 1 −
p0 − p1)T, and I = (1, 1, 1)T. This bound is reached by the
EnTO with Kraus operators,

K (n) =
2∑

i, j=0:i− j=n

√
G	

i j |i〉〈 j|, (11)

where n = −2,−1, 0, 1, 2 and G	
i j denotes the elements of

the optimal transition matrix G	 which reach the maximum
in Eq. (10). We analytically solve the problem in Eq. (10) (see
Appendix A for details) and present the result in Fig. 1. As
shown in this figure, the extreme states of the EnTO cone is
continuous, namely, a small perturbation in the output popu-
lation would only result in a small variance of the maximum
value of |ρ10|.

B. Optimal output coherence via TO

In order to derive the maximal value of |ρ10| via TO, we
start from the general form of the Hamiltonian of the heat
bath,

HR =
∑
ER

ER
ER , (12)

where ER are the eigenvalues of energy, and 
ER is the
projector to the eigenspace of ER. Here we assume that the
degeneracy of ER is monotonically nondecreasing with ER.

Without loss of generality, each eigenvalue ER can be
expressed as ER = nh̄ω + ξ ≡ E (ξ, n), where n is a non-
negative integer and ξ ∈ [0, h̄ω). Accordingly, 
ER ≡ 
ξ,n.
Now we divide the Hilbert space of R as HR = ⊕

ξ Hξ

with Hξ = ⊕
n Hξ,n and Hξ,n the eigenspace of E (ξ, n). The

Hamiltonian of the heat bath is then rewritten as HR = ⊕
ξ Hξ ,

where Hξ = ∑
n(nh̄ω + ξ )
ξ,n is the Hamiltonian acting on

Hξ . It follows that the thermal state of R reads

γR =
⊕

ξ

pξ γξ , (13)

where γξ = e−βHξ /Tr(e−βHξ ) is the thermal state of Hξ , and
pξ = Tr(e−βHξ )/[

∑
ξ ′ Tr(e−βHξ ′ )] satisfies

∑
ξ pξ = 1.

Further, the Hamiltonian of the total system reads

HSR =
⊕

ξ

HSRξ
, (14)

where HSRξ
= HS ⊗ Iξ + IS ⊗ Hξ is the Hamiltonian

acting on subspace HS ⊗ Hξ . Importantly, for HS =∑
m mh̄ω|m〉〈m|, the eigenvalues of HSRξ

and those of HSRξ ′
(where ξ ′ �= ξ ) does not have an overlap. Therefore, any joint
unitary which satisfies [U, HSR] = 0 is in a block-diagonal
form,

U =
⊕

ξ

Uξ , (15)

where Uξ acts on HS ⊗ Hξ and satisfies [Uξ , HSRξ
] = 0. Now

we introduce a lemma which will simplify our subsequent
analysis.

Lemma 1. For a system with Hamiltonian HS =∑
m mh̄ω|m〉〈m|, any thermal operation can be written as

ETO = ∑
ξ pξEξ , where Eξ is a thermal operation induced by

a heat bath with Hamiltonian Hξ = ∑
n(nh̄ω + ξ )
ξ,n.

Proof. From Eqs. (13) and (15), a thermal operation acting
on ρS reads

ETO(ρS ) = TrR[U (ρS ⊗ γR)U †]

= TrR

[⊕
ξ

Uξ

(
ρS ⊗

⊕
ξ

pξ γξ

)⊕
ξ

U †
ξ

]
=
∑

ξ

pξ TrRξ
[Uξ (ρS ⊗ γξ )U †

ξ ]

=
∑

ξ

pξEξ (ρS ). (16)

Here Eξ (ρS ) = TrRξ
[Uξ (ρS ⊗ γξ )U †

ξ ] is a thermal operation
induced by a heat bath with Hamiltonian Hξ , because γξ is
the thermal state of Hξ , and Uξ satisfies [Uξ , HSRξ

] = 0. This
completes the proof.

Next, we will first consider the output population at point
(b) in Fig. 1, and show a gap between the maximum values
of |ρ10| which can be preserved by EnTO and by TO. Then
we will show that this gap cannot be closed approximately,
namely, the extreme state at point (b) of the EnTO cone cannot
be reached by TO, even approximately.

1. Maximum coherence via TO for output population of point (b)

At point (b) in Fig. 1, the output population reads p0 =
1−q2

2 and p1 = 1
2 . For this output population, the transition

matrix is uniquely fixed as

G(b) =
⎡⎣1 − q2 0 1

0 1 0
q2 0 0

⎤⎦. (17)

Due to the equivalence between TO and EnTO in terms of
population dynamics, this transition matrix can also be real-
ized by TO. In the following, we will maximize the value of
|ρ10| over all thermal operations which achieve the transition
matrix as in Eq. (17). The maximum value of |ρ10| is denoted
as |ρTO

10 |.
From Lemma 1, any thermal operation acting on our qutrit

system can be written as a convex roof of thermal opera-
tions Eξ based on heat baths with a fixed energetic gap Hξ =∑

n(nh̄ω + ξ )
ξ,n. Thus we have G = ∑
ξ pξ Gξ , where Gξ

is the transition matrix corresponding to Eξ . Meanwhile, it is
easy to check that for G(b) as in Eq. (17), G(b) = ∑

ξ pξ Gξ if
and only if Gξ = G(b) for all ξ . It means that in order to realize
the transition matrix as in Eq. (17) by TO, each Eξ should
also achieve this transition matrix. Hence, for any thermal
operation ETO which can realize G(b), we have

| 〈1| ETO(ρ0) |0〉 | �
∑

ξ

pξ | 〈1| Eξ (ρ0) |0〉 |

� max
ξ

| 〈1| Eξ (ρ0) |0〉 |. (18)
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Therefore, the maximum value of |ρ10| which can be achieved
by TO equals to the maximum value realized by thermal
operations based on a heat bath with Hamiltonian Hξ . Further,
the value of ξ does not affect the state transition of S, so we set
ξ = 0 without loss of generality. The effective Hamiltonian of
the heat bath then reads HR = ∑

n nh̄ω
n, and the Gibbs state
of R is

γR =
∑

n

γn
n. (19)

The corresponding thermal operations are denoted as ETO
0 .

The joint unitary U is in the block-diagonal form U =⊕∞
k=0 U (k), where each block U (k) lives in a subspace with

total energy kh̄ω. Precisely, U (k) is written as

U (k) =
min{2,k}∑

i, j=0

|i〉 〈 j| ⊗ uk
i j, (20)

where |i〉 and | j〉 are energetic states of the system S, uk
i j is a

matrix of dimension dk−i × dk− j , and dn denotes the degener-
acy of the energy level ER = nh̄ω of the heat bath.

Now we define vectors �Ui j , whose kth entry is ( �Ui j )k =√
γk− juk

i j with k = max{i, j}, max{i, j} + 1, . . . and i, j =
0, 1, 2. For example,

�U00 = (√
γ0u0

00,
√

γ1u1
00, . . .

)
, (21)

�U11 = (√
γ0u1

11,
√

γ1u2
11, . . .

)
. (22)

Further, for two such vectors �A and �B which satisfy that for
all l , Al and Bl are matrices of the same size, we define the
inner product ( �A, �B) ≡ ∑

l Tr(A†
l Bl ). Then the inner product

of vectors �Ui j and �Ui′ j′ (where i − i′ = j − j′) reads

( �Ui′ j′ , �Ui j ) =
∞∑

k=max{i, j}
γk− jTr

(
u(k− j+ j′ )†

i′ j′ uk
i j

)
. (23)

By substituting Eqs. (19) and (20) to Eq. (2), we obtain that
for i − i′ = j − j′,

〈i| ETO
0 (| j〉 〈 j′|) |i′〉 = ( �Ui′ j′ , �Ui j ). (24)

In particular, when i = i′ and j = j′, Eq. (24) reduces to the
transition probability from j to i,

pi| j = Gi j = ( �Ui j, �Ui j ). (25)

Moreover, when i = j = 1 and i′ = j′ = 0, we have
〈1| ETO

0 (|1〉 〈0|) |0〉 = ( �U00, �U11). Remembering that
|〈1|ETO

0 (ρ0) |0〉| = 1
2 | 〈1| ETO

0 (|1〉 〈0|) |0〉 |, we obtain the
following:∣∣ρTO

10

∣∣ = max 1
2 |( �U00, �U11)|,

s.t. ( �U00, �U00) = 1 − q2, ( �U11, �U11) = 1. (26)

As we prove in Appendix B, the maximum in Eq. (26) is
reached by joint unitary operators whose main blocks uk

j j

( j = 0, 1, 2, k � j) are diagonal matrices Mk
j j whose entries

σs(Mk
j j ) (s = 0, . . . , dk− j − 1) satisfy σs(Mk

j j ) ∈ [0, 1] and
are in a nonincreasing order.

From Eq. (25), if Gi j = 0 for some i and j, then �Ui j = 0,
which means that uk

i j = 0, ∀k. Therefore, the joint unitary in

the thermal operation which realizes the transition matrix as
in Eq. (17) and can reach the maximum as in Eq. (26) should
be in the following form: U (0) = M0

00,

U (1) =
[

M1
00 0

0 M1
11

]
, (27)

and for k � 2,

U (k) =
⎡⎣ Mk

00 0 uk
02

0 Mk
11 0

uk
20 0 0

⎤⎦. (28)

Because each block U (k) is a unitary matrix, we have
M0

00 = Id0 , M1
00 = Id1 , and Mk

11 = Idk−1 for k � 1. Further, for
k � 2, we prove in Appendix C that

σs
(
Mk

00

) =
{

1, s = 0, . . . , dk − dk−2 − 1,

0, s = dk − dk−2, . . . , dk − 1.
(29)

It follows that

Tr
(
Mk†

00 Mk
00

) = Tr
(
Mk†

00 Mk+1
11

)
=
{

dk k = 0, 1,

dk − dk−2 k � 2.
(30)

It can be directly checked that this unitary can indeed achieve
the transition matrix as in Eq. (17). For example,

G00 = ( �U00, �U00) =
∞∑

k=0

γkTr
[
Mk†

00 Mk
00

]
= γ0d0 + γ1d1 +

∞∑
k=2

γk (dk − dk−2) = 1 − q2. (31)

For the last equality, we use the fact that γk = q2γk−2 and
hence

∑∞
k=2 γkdk−2 = q2∑∞

k=2 γk−2dk−2 = q2.
Now we are ready to calculate the following:∣∣ρTO

10

∣∣ = 1

2
( �U00, �U11)

= 1

2

∞∑
k=0

γkTr
[
Mk†

00 Mk+1
11

]
= 1

2
G00 = 1

2
(1 − q2). (32)

However, from Eq. (10), the maximal output coherence via
EnTO reads ∣∣ρEnTO

10

∣∣ = 1
2

√
1 − q2. (33)

Comparing Eqs. (32) and (33), we observe the non-negligible
gap between |ρEnTO

10 | and |ρTO
10 |,

10 = ∣∣ρEnTO
10

∣∣− ∣∣ρTO
10

∣∣
= 1

2 [
√

1 − q2 − (1 − q2)]. (34)

It means that the states with p0 = 1−q2

2 , p1 = 1
2 and |ρ10| ∈

( 1−q2

2 ,

√
1−q2

2 ] are in the EnTO cone but not in the TO cone of
ρ0. This extends the example in Ref. [6], where only one state
in CEnTO(ρ0)\CTO(ρ0) is found.
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2. Disproof of closure conjecture

Here we prove that the extreme state at point (b) of Fig. 1
in the EnTO cone of ρ0, i.e., the state with (p0, p1, |ρ10|) =
1
2 (1 − q2, 1,

√
1 − q2), cannot be reached by TO approxi-

mately, if the temperature is proper such that 1 − q − q2 � 0
and q � 0 (or equivalently, 0 � q �

√
5−1
2 ).

Precisely, we consider states in the TO cone of ρ0 with
(pε0

0 , pε0
1 , |ρ10,ε0 |). Here pε0

0 , pε0
1 is a valid population distribu-

tion in the neighbourhood of point (b), i.e., pε0
0 − 1

2 (1 − q2) �
ε0 and 1

2 − pε0
1 � ε0, where ε0 is small. We will prove a

non-negligible gap between the maximum value of |ρ10,ε0 | and
|ρEnTO

10 | = 1
2

√
1 − q2.

From the linearity of the population dynamics, a pertur-
bation in the output population distribution results from a
perturbation in the transition matrix. Together with Lemma
1, it is sufficient to set the Gibbs state of R as in Eq. (19) and
restrict the entries of the perturbed transition matrix G(b)

ε as
|G(b)

i j,ε − G(b)
i j | � ε. Therefore, we define∣∣ρTO

10,ε

∣∣ = max 1
2

∣∣( �U ε
00,

�U ε
11

)∣∣,
s.t.

∣∣(1 − q2) − ( �U ε
00,

�U ε
00

)∣∣ � ε,

1 − ( �U ε
11,

�U ε
11

)
� ε. (35)

Here, the two restrictions come from |G(b)
00,ε − G(b)

00 | � ε and

|G(b)
11,ε − G(b)

11 | � ε, respectively. The following inequality is
the main result of this section:

ε
10 ≡ ∣∣ρEnTO

10

∣∣− ∣∣ρTO
10,ε

∣∣
> 1

4 (1 −
√

1 − q2)2(1 − q − q2)(1 − δ) − 2ε, (36)

where δ is small. It means that when the temperature is cho-
sen properly such that q and 1 − q − q2 are not small, the
output coherence |ρEnTO

10 | = 1
2

√
1 − q2 cannot be reached ap-

proximately by thermal operations which realizes a perturbed
population dynamics.

In the following, we sketch the proof of Eq. (36), and leave
the rigorous proof to Appendix D.

From Lemma 2 in Appendix B, the maximum in Eq. (35)
is reached by joint unitary operators with uk

j j,ε = Mk
j j,ε ,

where Mk
j j,ε are diagonal matrices with non-negative entries

in a nonincreasing order. Hence |( �U ε
00,

�U ε
11)| = ( �U ε

00,
�U ε
11) =

( �U ε
11,

�U ε
00). Now we define

α =
( �U ε

00,
�U ε
11

)( �U ε
11,

�U ε
11

) , �μ = �U ε
00 − α �U ε

11. (37)

Direct calculation leads to

pε
0|0 pε

1|1 − ( �U ε
00,

�U ε
11

)2 = pε
1|1(�μ, �μ), (38)

where pε
0|0 = ( �U ε

00,
�U ε
00) ∈ [1 − q2 − ε, 1 − q2 + ε] and

pε
1|1=( �U ε

11,
�U ε
11) ∈ [1 − ε, 1]. Clearly,

√
pε

0|0 pε
1|1 � ( �U ε

00,
�U ε
11).

Together with pε
0|0 < pε

1|1, we obtain

1
2

√
pε

0|0 pε
1|1 − 1

2

( �U ε
00,

�U ε
11

)
> 1

4 (�μ, �μ). (39)

Because 1
2

√
pε

0|0 pε
1|1 is ε-close to |ρEnTO

10 |, and the maximum

value of 1
2 ( �U ε

00,
�U ε
11) equals to |ρTO

10,ε |, Eq. (39) means that the
gap ε

10 cannot be closed if (�μ, �μ) is not small.
From the definition as in Eq. (37) and the fact that pε

1|1 ∈
[1 − ε, 1], we obtain the following:

(�μ, �μ) >

∞∑
k=0

γk

dk−1∑
s=0

[
σs
(
Mk

00,ε

)− α
]2 − 2αε. (40)

In order to evaluate the right-hand side of Eq. (40), we assume
the heat bath is large and satisfies the following.

(i) There is a set of energy levels R, such that∑
ER∈R Tr(γR
ER ) = 1 − δ, where δ is small.
(ii) For any ER ∈ R, ER ± mh̄ω ∈ R, where m = 1, 2.
(iii) For ER ∈ R, the degeneracies g(ER) satisfy

| g(ER−mh̄ω)
g(ER )qm − 1| � δ, where m = 1, 2.
These assumptions have been employed in Ref. [3] to de-

rive the famous thermo-majorization relation.
By assumption (iii) and the condition 1 − q − q2 � 0, we

have

dk − dk−1 − dk−2 � [(1 − q − q2) − (q + q2)δ]dk > 0,

(41)
for kh̄ω ∈ R. The unitarity of the block U (k)

ε then ensures that
at least dk − (dk−1 + dk−2) singular values of Mk

00,ε are equal
to 1. By subtracting some non-negative terms from the right-
hand side of Eq. (40), we obtain the following:

(�μ, �μ) >
∑

k:kh̄ω∈R
γk

∑
s:σs (Mk

00,ε )=1

[
σs
(
Mk

00,ε

)− α′big]2 − 2αε

=
∑

k:kh̄ω∈R
γk (dk − dk−1 − dk−2)(1 − α)2 − 2αε

� (1 − α)2(1 − q − q2)(1 − δ) − 2αε. (42)

Here α �
√

pε
0|0

pε
1|1

�
√

1−q2+ε

1−ε
≡ α(ε) by definition. Clearly,

α(ε) is ε-close to
√

1 − q2. Together with Eq. (39), we arrive
at Eq. (36).

It is worth mentioning that, although our derivation heavily
depends on the condition 1 − q − q2 � 0, this condition is by
no means necessary for the gap. Moreover, the bound to the
gap as in Eq. (36) is not tight. Nevertheless, these results are
sufficient for the purpose of this paper, which is to disprove
the closure conjecture with a counterexample. We will leave
the explicit problems, such as necessary conditions and tighter
bounds on the gap, to future work.

V. CONCLUSIONS

We have disproved the closure conjecture with an analytic
counterexample. We derive the EnTO cone of a given qutrit
state, and calculate the optimal coherence preserved by TO
for a given output population distribution. We also evaluate
the upper bound on the coherence preserved by TO, if a small
perturbation on the output population distribution is allowed.
By doing so, we discover a state conversion under EnTO
which cannot be approximated by TO.

Our findings show that thermal operations and enhanced
thermal operations can lead to different laws of coherence
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evolution. Further, the methods we developed here can be
used to evaluate the upper bound on the output coherence via
thermal operations. Thus our results can contribute to studying
the restrictions on coherence dynamics under TO.
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APPENDIX A: ANALYTIC EXPRESSION
FOR ENTO CONE OF ρ0

In this section, we analytically solve the optimization
problem in Eq. (10). By observing the objective function in
Eq. (10), we notice that the maximum can be taken at the point
(G00, G11) where both G00 and G11 are maximal in the feasible
region.

Here we first derive the feasible region of optimization.
The transition conditions Gγ = γ, Gp0 = p give us the fol-
lowing equations:

G01 = 2p0 − G00, (A1)

G10 = 2p1 − G11, (A2)

G02 = [1 − G00 − q(2p0 − G00)]/q2, (A3)

G12 = [1 − qG11 − (2p1 − G11)]/q2, (A4)

where (p0, p1) is a fixed point in the hexagon in Fig. 1. By
applying the condition that above entries lie in [0,1], we give
the bounds of G00 and G11 as

Glb
00 � G00 � Gub

00 := min

{
2p0, 1,

1 − 2qp0

1 − q

}
, (A5)

Glb
11 � G11 � Gub

11 := min

{
2p1, 1,

q2 + 2p1 − 1

1 − q

}
. (A6)

Here we omit the expressions for the lower bounds Glb
00 and

Glb
11, because the central question here is to find the up-

per bound for
√

G00G11. Further, by applying the condition
GTI = I, we get that G00 + G10, G01 + G11 and G02 + G12

also lie in [0,1]. It follows that

lb � G00 − G11 � ub, (A7)

where

lb := max

{
−2p1, 2p0 − 1,

1 − 2(qp0 + p1)

1 − q
+ q

}
, (A8)

ub := min

{
1 − 2p1, 2p0,

1 + q − 2(qp0 + p1)

1 − q

}
. (A9)

The combination of Eqs. (A5), (A6), and (A7) gives the nec-
essary and sufficient condition for entries G00 and G11 in a
feasible transition matrix G. The reason for sufficiency is as
follows. If one starts from a given pair of G00 and G11 which
satisfies these three equations, other entries of G are fixed by
Eqs. (A1)–(A4) and GTI = I. Further, the transition matrix G
as such satisfies all of the four conditions in Eq. (10).

Next, we calculate the maximum in Eq. (10) for the follow-
ing three cases.

Case 1. lb � Gub
00 − Gub

11 � ub.
Case 2. lb > Gub

00 − Gub
11.

Case 3. Gub
00 − Gub

11 > ub.
For Case 1, it is easy to see that G	

00 = Gub
00 and G	

11 = Gub
11.

For Case 2, the upper bound Gub
11 cannot be reached by G	

11
because of Eq. (A7), so we have G	

00 = Gub
00 and G	

11 = Gub
00 −

lb. Similarly, for Case 3, we have G	
00 = Gub

11 + ub and G	
11 =

Gub
11. To sum up, we arrive at the following analytic solution to

Eq. (10).

1

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

Gub
00Gub

11, lb � Gub
00 − Gub

11 � ub;√
Gub

00

(
Gub

00 − lb
)
, lb > Gub

00 − Gub
11;√(

Gub
11 + ub

)
Gub

11, Gub
00 − Gub

11 > ub.

(A10)

This solution is visualized in Fig. 1.

APPENDIX B: OPTIMAL JOINT UNITARY

In this section, we will show that, among all of the joint
unitary operators which achieve a given transition matrix, the
maximum value of |ρ10| is reached by the unitary operators
whose main blocks are diagonal with non-negative entries in
a nonincreasing order. Precisely, we will prove the following
lemma.

Lemma 2. Let HS = ∑2
m=0 mh̄ω |m〉 〈m| and HR =∑

n nh̄ω
n be the Hamiltonian of the main system S and that
of the heat bath R, respectively, and |ψ0〉 = 1√

2
(|0〉 + |1〉) be

the initial state of S. For any (energy-preserving) joint unitary
U , one can always find another (energy-preserving) joint
unitary Ũ , which satisfies the following.

(a) ũk
j j = Mk

j j , where Mk
j j are diagonal matrices with non-

negative entries in a nonincreasing order.

(b) ( �Ui j, �Ui j ) = ( �̃Ui j,
�̃Ui j ), which means that U and Ũ lead

to the same transition matrix.
(c) |( �U00, �U11)| � |( �̃U00,

�̃U11)|, which means that the output
coherence |ρ10| achieved by Ũ is no less than that achieved by
U .

The rest of this section will be devoted to the proof of this
lemma. Following the method as in Ref. [6], we perform the
singular value decomposition (SVD) to the main blocks:

uk
j j = Ak

j jM
k
j jB

k†
j j , (B1)

where Ak
j j and Bk

j j are unitary matrices, and Mk
j j are diag-

onal matrices with singular values (which are non-negative
numbers) in a nonincreasing order as entries. By introduc-
ing two unitary matrices A ≡ ⊕∞

k=0[
⊕min{k,2}

j=0 Ak
j j] and B ≡⊕∞

k=0[
⊕min{k,2}

j=0 Bk
j j], we define a new joint unitary,

Ũ = A†UB. (B2)

Similar to Eq. (15), Ũ can be expressed as Ũ = ⊕∞
k=0 Ũ (k)

with Ũ (k) = ∑min{k,2}
i, j=0 |i〉 〈 j| ⊗ ũk

i j . Then Eq. (B2) leads to

ũk
i j = Ak†

ii uk
i jB

k
j j . (B3)

Now we are ready to prove that Ũ satisfies the conditions (a),
(b), and (c) as mentioned above.
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By substituting Eq. (B1) to Eq. (B3) with i = j, we have
ũk

j j = Ak†
j j A

k
j jM

k
j jB

k†
j j B

k
j j = Mk

j j . Thus, condition (a) holds.
As for condition (b), we employ the definition of inner

product as in Eq. (23), and obtain the following:

( �̃Ui j,
�̃Ui j )

=
∞∑

k=max{i, j}
γk− jTr

(̃
uk†

i j ũk
i j

)
=

∞∑
k=max{i, j}

γk− jTr
(
Bk†

j j u
k†
i j Ak

iiA
k†
ii uk

i jB
k
j j

)
=

∞∑
k=max{i, j}

γk− jTr
(
uk†

i j uk
i j

)
= ( �Ui j, �Ui j ). (B4)

Then from Eq. (25), this equality means that U and Ũ leads to
the same transition matrix.

In order to prove condition (c), we employ the following
lemma, which was proved in Refs. [19,20] and introduced to
this problem in Ref. [6].

Lemma 3. If X and Y are d × d complex matrices, W
and V are d × d unitary matrices, and σ1 � σ2 � · · · σd � 0
denotes ordered singular values, then

|Tr(W XVY ) | �
d−1∑
s=0

σs(X )σs(Y )

and the equality always exist for some W and V .
From this lemma, we have |Tr[u(k−1)†

00 uk
11]|�∑dk−1−1

s=0

σs(u
(k−1)†
00 )σs(uk

11) = Tr[M (k−1)†
00 Mk

11], and hence,

|( �U00, �U11)| �
∞∑

k=1

γk−1

∣∣Tr
[
uk†

00uk−1
11

]∣∣
�

∞∑
k=1

γk−1Tr
[
M (k−1)†

00 Mk
11

]
= |( �̃U00,

�̃U11)|. (B5)

This completes the proof of Lemma 2.

APPENDIX C: PROOF OF EQ. (29)

In this section, we will prove Eq. (29) in the main text. For
k � 2, we have

U (k) =
⎡⎣ Mk

00 0 uk
02

0 Mk
11 0

uk
20 0 0

⎤⎦, (C1)

where Mk
11 = Idk−1 and Mk

00 is a diagonal matrix with non-
negative entries in a nonincreasing order. We will first prove
that the number of zero rows in uk

02 equals exactly to dk −
dk−2, and then show that there are dk − dk−2 entries of Mk

00
which equal to one, while the rest of the entries of Mk

00 all
equal to zero.

Here and following, we denote the sth row of a ma-
trix X as �rs(X ), and the lth column of X as �cl (X ). From

the unitarity of U (k), we have �rs(U (k) )∗ · �rs′ (U (k) ) = δss′ and
�cl (U (k) )∗ · �cl ′ (U (k) ) = δll ′ . Our derivations are based on these
two equations.

For dk + dk−1 � l, l ′ < dk + dk−1 + dk−2, we have δll ′ =
�cl (U (k) )∗ · �cl ′ (U (k) ) = �cl (uk

02)∗ · �cl ′ (uk
02). It means that the

dk−2 columns of uk
02 are nontrivial and linearly independent.

Therefore, at least dk−2 rows of uk
02 are nontrivial.

For 0 � s, s′ � dk − 1 and s �= s′, we have 0 = �rs(U (k) )∗ ·
�rs′ (U (k) ) = �rs(uk

02)∗ · �rs′ (uk
02). Hence, there are at most dk−2

nontrivial rows in uk
02, and the rest of the rows of uk

02 have
to be zero.

Therefore, the number of zero rows in uk
02 is dk − dk−2.

Then we have

�rs
(
uk

02

){= 0, 0 � s � dk − dk−2 − 1,

�= 0, dk − dk−2 � s � dk − 1.
(C2)

It follows that for 0 � s � dk − dk−2 − 1, we have 1 =
�rs(U (k) )∗ · �rs(U (k) ) = [σs(Mk

00)]2, and hence σs(Mk
00) = 1.

For dk − dk−2 � s � dk − 1 and dk + dk+1 � l � dk +
dk+1 + dk+2, the scalar product �cs(U (k) )∗ · �cl (U (k) ) = 0 gives
σs(Mk

00) · �rs(uk
02) = 0. Meanwhile, �rs(uk

02) �= 0, so we have
σs(Mk

00) = 0.

APPENDIX D: DETAILED PROOF OF EQ. (36)

In this section, we prove Eq. (36) under the condition 1 −
q − q2 � 0 (or equivalently, q �

√
5−1
2 ) and the assumptions

(i)–(iii) on the heat bath.
Here we start from Eq. (38) in the main text. It follows that√

pε
0|0 pε

1|1 � ( �U ε
00,

�U ε
11) and hence,

1

2

√
pε

0|0 pε
1|1 − 1

2

( �U ε
00,

�U ε
11

)
� 1

4

√
pε

1|1
pε

0|0
(�μ, �μ). (D1)

Because
√

pε
0|0 pε

1|1 �
√

1 − q2 + ε =
√

1 − q2 + ε

2
√

1−q2
+

O(ε2), and

√
pε

1|1
pε

0|0
�
√

1−ε
1−q2+ε

= 1√
1−q2

− 2−q2

2(1−q2 )3/2 ε + O(ε2),

the above equation becomes

ε
10 � 1

4

(
1 − 2 − q2

2(1 − q2)
ε

)
(�μ, �μ)√
1 − q2

− ε

4
√

1 − q2
+ O(ε2).

(D2)

From the definition as in Eq. (37) and the fact that pε
1|1 ∈ [1 −

ε, 1], we obtain the following:

(�μ, �μ) >

∞∑
k=0

γk

dk−1∑
s=0

[
σs
(
Mk

00,ε

)− α
]2 − 2αε. (D3)

The reason is as follows. First, because 1 − pε
1|1 � ε,∑∞

k=0 γk
∑dk−1

s=0 1=1, and pε
1|1=

∑∞
k=0 γk

∑dk−1
s=0 [σs(Mk

11,ε )]2,
we have the following:

∞∑
k=0

γk

dk−1∑
s=0

[
1 − σs

(
Mk

11,ε

)]
�

∞∑
k=0

γk

dk−1∑
s=0

[
1 − σs

(
Mk

11,ε

)2] � ε. (D4)
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By the definition as in Eq. (37),

(�μ, �μ)

=
∞∑

k=0

γk

dk−1∑
s=0

[
σs
(
Mk

00,ε

)− ασs
(
Mk

11,ε

)]2
�

∞∑
k=0

γk

dk−1∑
s=0

{[
σs
(
Mk

00,ε

)− α
]2 − 2α

[
1 − σs

(
Mk

11,ε

)]}
�

∞∑
k=0

γk

dk−1∑
s=0

[
σs
(
Mk

00,ε

)− α
]2 − 2αε. (D5)

Here for the second line, we have used σs(Mk
11,ε ) ∈ [0, 1] and

σs(Mk
00,ε ) − α � −1.

Now we consider the kth block of U ε ,

U (k)
ε =

⎡⎢⎣ Mk
00,ε uk

01,ε uk
02,ε

uk
10,ε Mk

11,ε uk
12,ε

uk
20,ε uk

21,ε uk
22,ε

⎤⎥⎦, (D6)

where kh̄ω ∈ R. By assumption (iii) and the condition 1 −
q − q2 � 0, we have dk > dk−1 + dk−2. For 0 � s, s′ � dk −
1 and s �= s′, the unitarity of U (k)

ε implies

0 = �rs
(
U (k)

ε

)∗ · �rs′
(
U (k)

ε

)
= �rs

([
uk

01,ε

∣∣uk
02,ε

])∗ · �rs′
([

uk
01,ε

∣∣uk
02,ε

])
. (D7)

Here [uk
01,ε |uk

02,ε] is a rectangle matrix of dimension dk ×
(dk−1 + dk−2), which is composed of two blocks uk

01,ε and
uk

02,ε . Hence there are at most (dk−1 + dk−2) nontrivial rows
of [uk

01,ε |uk
02,ε] satisfying Eq. (D7), and the rest of the

dk − (dk−1 + dk−2) rows are zero. For �rs([uk
01,ε |uk

02,ε]) = 0,
the equality �rs(U (k)

ε )∗ · �rs(U (k)
ε ) = 1 leads to σs(Mk

00,ε ) = 1.
Therefore, at least dk − (dk−1 + dk−2) singular values of
Mk

00,ε are equal to 1. By subtracting some non-negative
terms from the right-hand side of Eq. (D3), we obtain the

following:

(�μ, �μ) >
∑

k:kh̄ω∈R
γk

∑
s:σs (Mk

00,ε )=1

[
σs
(
Mk

00,ε

)− α
]2 − 2αε

=
∑

k:kh̄ω∈R
γk (dk − dk−1 − dk−2)(1 − α)2 − 2αε

� (1 − α)2(1 − q − q2)(1 − δ) − 2αε. (D8)

For the last line, we have used γk = γk−mqm with m = 0, 1, 2,
and hence,

∑
k:kh̄ω∈R γkdk−m = qm

∑
k:kh̄ω∈R γk−mdk−m =

qm(1 − δ). By definition, α �
√

pε
0|0/pε

1|1 �
√

1−q2+ε

1−ε
≡ α(ε),

and hence α �
√

1 − q2 + O(ε), and

(1 − α)2

� [1 − α(ε)]2

= [1 − α(ε)]2|ε=0 − 2[1 − α(ε)]
dα(ε)

dε

∣∣∣∣
ε=0

ε + O(ε2)

= [1 −
√

1 − q2]2

− (1 −
√

1 − q2)(2 − q2)√
1 − q2

ε + O(ε2). (D9)

Then Eq. (D8) becomes

(�μ, �μ)

> [1−
√

1 − q2]2(1 − q − q2)(1 − δ)− f1(q)ε + O(ε2),

(D10)

where f1(q) = 2
√

1 − q2 + (1−
√

1−q2 )(2−q2 )(1−q−q2 )√
1−q2

. Together

with Eq. (D2), we obtain

ε
10 >

[1 −
√

1 − q2]2(1 − q − q2)(1 − δ)

4
√

1 − q2

−1

4
f (q)ε + O(ε2), (D11)

where f (q) = 2 + [1−(1−q2 )2](1−q−q2 )
2(1−q2 )3/2 + 1√

1−q2
. For 0 < q <

√
5−1
2 , it holds that 1 < 1√

1−q2
< 2 and f (q) < 8. Then we

obtain the simpler form as in Eq. (36).
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