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This study presents what is to our knowledge a new and efficient method for the design of an optical finite
impulse response �FIR� filter by employing a particle swarm optimization technique. With the method
proposed, the design of an optical FIR filter, which is able to provide an arbitrary spectrum output based
on crystal birefringence, could be implemented with good performance and high efficiency. The design
procedure is discussed. A typical example of a green/magenta filter used in a liquid crystal on silicon
projection display is included to demonstrate the feasibility and efficiency of this method in this design
process as compared with simulated annealing. © 2003 Optical Society of America
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1. Introduction

During the past few decades, a birefringent filter
proved to be an effective tool in a number of applica-
tions, such as astronomical observation, tunable la-
sers, optical communications, and projection display.
There are four previously known types of birefringent
filters1: Lyot, partial polarizing, Solc,2 and multiple
liquid-crystal tunable filters.3 Among them, the reg-
ular structures of the first three types result in a
relatively simple output. Usually, only the narrow-
band spectrum is available. While the multiple
liquid-crystal tunable filter suffers the main draw-
back of being difficult to control, in contrast, the op-
tical finite impulse response �FIR� filter exhibits its
own attractiveness in providing an arbitrary spec-
trum with double channels to meet the increasing
needs and serving not only as a monochromator but
also as a color manipulator over an extended field.4
Derived from the Solc filter, the optical FIR filter
consists of a stack of identical retardation plates of
birefringent material sandwiched between two linear
polarizers, one at each end. But the relative angles
of each plate are arranged in a specific configuration
determined by the optimization algorithm. This
structure determines the output that if N plates are
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concerned, there will be N � 1 impulses with an
identical time interval, coincident with the FIR filter.
So it is named the optical FIR filter.5

Briefly, the basic idea for the optical FIR filter de-
sign is to: first develop the desired output spectrum
into the finite terms of a Fourier series and then
determine the whole structure �the relative angles of
both retarders and analyzer� according to the optical
network backward transfer method proposed by S. E.
Harris.6 How to approximate the Fourier series
with the desired output spectrum in minimal terms is
the key problem. The evaluation function parame-
terized with retarder angles is quite complex with
multiple peaks. For such a problem as multiparam-
eter optimization, global optimization algorithms
such as a genetic algorithm have been attempted
feasibly but the genetic operators, such as selection,
crossover, and mutation are relatively complex. By
comparison, simulated annealing �SA� is much sim-
pler but it needs too many iterations, and the result
strongly depends on the cooling schedule preestab-
lished.8 Here, we employ the particle swarm opti-
mization �PSO� technique as proposed by Kennedy
and Eberhart in 19959 as an alternative method to
implement optical FIR filter design. We have
achieved good performance with high efficiency.

The PSO technique, a kind of evolution computa-
tion, with roots in the preying of large number of
birds or fish. The underlying rules of cooperation
and competition within social swarms give it good
capability to make global optimization with the help
of memory rather than to simply random search in a
certain area. So it has a better chance to fly into a
better solution quickly than some previous optimiz-
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ers have in addition to its better performance. This
paper concentrates on the application of PSO to de-
sign an optical FIR filter. The example of broad-
band green/magenta (G�M) filter used in a liquid
crystal on silicon �LCOS� projection display for color
separation�combination follows to demonstrate its ef-
fectiveness. The efficiency in optical filter design
compared with the SA algorithm is also given.

2. Optical Finite Impulse Response Filter

The optical FIR filter is composed of a stack of iden-
tical birefringent plates arranged in specific angles.
The whole stack is then placed between a linear po-
larizer and an analyzer. All the birefringent crys-
tals are cut with their crystal optical axes parallel to
the surfaces, so that they act as the retardation
plates.6,7

As shown in Fig. 1, the polarized light after the
polarizer comes through the retarder stack, in which
the retarders are of the same thickness and crystal
material. Because of birefringence, each retarder
separates the input light into two components along
its fast and slow axis respectively, and each compo-
nent acts as the input of the next one. Therefore, if
there are N plates, it will produce 2N impulses. In
fact, there are only N � 1 impulses due to the iden-
tical phase delay brought from identical plates. The
time interval between them is determined by the
crystal thickness and the difference of the material
refractive indices. Eq. �1� shows this output.

C�t� � C0��t� � C1��t � a� � C2��t � 2a�

� · · · � Cn��t � na�

� �
k�0

n

Ck��t � ka�, (1)

where, a denotes the time interval of the impulse
series, given by

a � ts � tf �
L��

c
. (2)

Here, ts, tf are the time that two components along
the fast and slow axes needed to pass through a single

plate. c is the velocity of light in vacuum and ��
represents the difference of their refractive indices.

�� � ne � no. (3)

So the phase delay caused by a single plate can be
expressed as �if we suppose that 	 is the wavelength
in vacuum�


 �
2���L

	
. (4)

The frequency response of the filter is the Fourier
transform of Eq. �1�, expressed as

C��� � C0 � C1 exp�ia�� � C2 exp�i2a��

� · · · � Cn exp�ina��

� �
k�0

n

CK exp�ika��, (5)

where � � 2�f � 2�c�	 denotes the angular fre-
quency of the light. Hence the spectrum response of
the filter is the equivalent transform of Eq. �5�.

C�	� � C0 � C1 exp�i2���L�1
	��

� C2 exp�i4���L�1
	��

� · · · � Cn exp�in2���L�1
	��

� �
k�0

n

Ck exp�ik2���L�1
	��

� �
k�0

n

Ck exp�ik
�. (6)

From the discussion above, it can be seen that the
indirect design method is applied here. We should
first optimize the coefficients Ck to approximate the
desired spectrum, and then convert them into the
series of actual angles according to optical network
backward transfer technique. Because all of the de-
tectors receive only light intensity, what they actu-
ally receive is C�	�2. The complementary color,
which is the output along the perpendicular direction
of the analyzer, can be expressed as D�	�2.

D�	� � �
k�0

n

Dk exp�ik2���L�1
	�� . (7)

In optical network backward transfer, the angle of
each plate is deduced backward according to the prin-
ciple of energy conservation and the relationship be-
tween the output and input of each plate. The
details for computation can be found in Ref. 6.

Fig. 1. Basic structure of optical FIR filter.
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3. Application of Particle Swarm Optimization in an
Optical FIR Filter Design

A. Particle Swarm Optimization

Particle swarm optimization simulates the social be-
havior of a flock of birds or fish.9–12 Just as the other
evolutionary computation, there are a population of
individuals �particles�. Each individual, in a con-
crete problem, represents a potential solution and is
taken as a point in a D-dimension problem space.
The position of ith particle is noted as pXi � �xi1,
xi2, . . . , xiD� with fitness pfitness and velocity Vid �
�vi1, vi2, . . . , viD�. Its previous best position �in the
sense that the position gives the best fitness� is noted
as Pi � �pi1, pi2, . . . , piD� and the corresponding fit-
ness is pbest. The best fitness of this population
within this iteration is recorded as pfitness_best.
The best previous position in the whole population is
gX � �pg1, pg2, . . . , pgD� with fitness gbest. n de-
notes the number of iterations. Within each gener-
ation, the particle renews its own velocity and
position according to two rules as Eq. �8� and Eq. �9�
show:

vid � w�n�vid � C1rand�� pid � xid�

� C2Rand�� pgd � xid�, (8)

xid � xid � vid, d � 1, 2, . . . , D. (9)

Usually C1 � C2 � 2 is chosen to take the same
weight. rand� and Rand� are random factors uni-
formly distributed between 0 and 1. In each gener-
ation, after the particle renews its velocity and
position, the characteristic parameters of the popu-
lation, such as Pi, pbest, gX, and gbest are refreshed.
To avoid oversized velocity, the velocity should be
confined within a certain value and the location
should be limited within the area of the solutions.
The calculation of fitness is discussed in Subsection
3.B.

The inertia weight function

w�n� �
0.5n

1 � N
�

0.4 � 0.9N
1 � N

(10)

will decrease linearly from 0.9 to 0.4 through the run
to adjust the global and local searching capability.
N is the maximal times of iteration. The bigger w is,
the stronger the global searching ability it has.
With the initial position and velocity of each particle
produced randomly by computer, the basic process of
particle swarm search is diagramed on Fig. 2.

It is noted that Eq. �8� is composed of three parts.
The first part provides the particle with the tendency
to exploit new areas. The second part gives the par-
ticle self-cognition, while the third part makes the
particle show social-cognition. All of them contrib-
ute and share with the memory of the whole popula-
tion. In other words, the particle updates itself
constantly according to the information both from
itself and from the entire population. Therefore it is

more likely to fly into the optimal solution area rap-
idly.

B. Optical FIR Filter Design with Particle Swarm
Optimization

To apply the optimization to the optical FIR filter
design problem, a reasonable evaluation function is
prerequisite. Given that the desired spectrum dis-
tribution is Cdesired���, the actual spectrum distribu-
tion is Cactual��� � C���C���*. The evaluation
function could be designed in the sense of weighted
least square with the variables of CK, expressed in
Eq. �11�.

Fobj�CK� � �
i�0

i�M

P��̃i�W��̃i��Cactual��̃i, CK�

� Cdesired��̃i��
2, (11)

where

�̃i �
i

M
, i � 0, 1, 2 . . . M. (12)

It represents the normalized sample frequency in one
basic period of the filter. Here P��̃i� is the penalty
�weight� of a single point that is used to restrict rip-
ples on this point.

W��̃i� � �w1 , within pass band
w2 , within stop band
w3 , within trans_band

(13)

represents the weight of each band. trans_band is a
user-defined variable representing the transition
bandwidth. It works as a control parameter to en-
able the tradeoff of ripples and transition bandwidth.
If trans_band is too small, the object function will

Fig. 2. Basic process of particle swarm optimization.
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inevitably optimize the curve in the minimal transi-
tion bandwidth so as to cause large ripples. There-
fore, the reasonable definition of trans_band will
contribute to suppressing ripples. Usually, we
choose w1, w2 � w3 to loosen the requirement of the
curve in the transmission band.

Unlike other algorithms, PSO has few parameters
to adjust and the result has little relationship with
the size of the population, which makes the filter
design easy to operate.

4. Example Design and Comparison

Here, the example of a G�M broadband filter design
used in the LCOS projector optical engine for color
separation�combination is presented to demonstrate
the effectiveness of this method. The desired spec-
trum is shown in Fig. 3. The solid line denotes the
green color spectrum and the dashed line denotes its
complementary color, magenta. Either color could
be easily obtained through 90° rotation of the ana-
lyzer or the polarization beam splitter.

With randomly produced initial particles’ velocities
and positions, we get the result of a six-order filter by
the PSO technique, shown as Fig. 4. This result is
obtained under the condition that the maximal times
of iteration N � 4000, the population size popsize �
20, and the number of sample frequency point M �
256. In Fig. 4, the solid curve shows the design with
PSO and the dashed curve shows the design with SA.

It seems that the two designs have slight differences
between them.

In practical use, the spectrum of the filter will be
affected by the dispersion of material. For material
of quartz, whose dispersion coefficients are relatively
smaller, the spectrum of the G�M filter will appear as
shown on Fig. 5. The solid curve shows the design in
consideration of material dispersion and the dashed
curve shows the former design without dispersion,
the same as the curve shown by the solid curve in Fig.
4.

Although both the two algorithms are able to find
satisfying results, their efficiencies to find an optimal
solution are extraordinarily different. Here, we
show the convergent process of these two algorithms
from which we can learn the causes. First, Fig. 6
depicts the decreasing process of the best fitness of 20
particles �gbest� in only 1000 iterations, though the
final iteration is 4000. Fig. 7 depicts how fitness in
SA changes during the run, in which each iteration
refers to one completion of the Markov chain with a
length of 3000 iterations. In the process of SA, the
optimal solution is obtained after 68 iterations. So
the times of evaluation completed by the PSO versus
the SA are 4000 � 20:3000 � 68. Second, for the
same evaluation function, the average time con-
sumed by the PSO in a whole run is approximately

Fig. 3. Desired spectrum of G�M broadband filter.

Fig. 4. Comparison of G�M filter design in PSO and SA, six order.

Fig. 5. Comparison of design with dispersion and without disper-
sion.

Fig. 6. Decrease process of PSO.
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2.5 min but in contrast the time consumed by SA is
over 8 min. This is tested in a C program, under
PIII650 CPU, 256M Ram. Third, the decrease in the
PSO is monotonic, while the decrease in the SA is
oscillatory, the characteristic features of the two al-
gorithms. Tracking the minimal fitness of the two
algorithms, we can see that PSO converges much
faster than SA in this problem. Fourth, there are
fewer parameters to adjust in the PSO, while in the
SA the parameters in the cooling rate have large
impact on the results. Thus, the PSO is easier to
operate. Concerning time consumption and conver-
gence speed, the PSO is more efficient than the SA in
this particular problem of optical FIR filter design.

5. Conclusions

A simple and effective method for optical FIR filter
design based on particle swarm optimization is pre-
sented. Its attractiveness comes from its high effi-
ciency with few parameters to adjust for good
performance. For optical FIR filter design, particle
swarm optimization is effective to attain arbitrary
spectrum output.13
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