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Solitons are self-sustaining particle-like wave packets found throughout nature. Optical systems such as optical fibers
and mode-locked lasers are relatively simple, are technologically important, and continue to play a major role in our
understanding of the rich nonlinear dynamics of solitons. Here we present theoretical and experimental observations of
a new class of optical soliton characterized by pulses with large and positive chirp in normal dispersion resonators with
strong spectral filtering. Numerical simulations reveal several stable waveforms including dissipative solitons charac-
terized by large frequency chirp. In experiments with fiber cavities driven with nanosecond pulses, chirped dissipative
solitons matching predictions are observed. Remarkably, chirped pulses remain stable in low quality-factor resonators
despite large dissipation, which enables new opportunities for nonlinear pattern formation. By extending pulse gen-
eration to normal dispersion systems and supporting higher pulse energies, chirped dissipative solitons will enable
ultrashort pulse and frequency comb sources that are simpler and more effective for spectroscopy, communications, and
metrology. Scaling laws are derived to provide simple design guidelines for generating chirped dissipative solitons in
microresonator, fiber resonator, and bulk enhancement cavity platforms. ©2021Optical Society of America under the terms

of theOSAOpen Access Publishing Agreement
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1. INTRODUCTION

Self-organizing structures are found in many natural nonlinear
systems including the ocean, the atmosphere, solid-state matter,
and animals [1]. Optical systems have played a major role in the
study of self-organization, including with the development of
solitons, which are self-sustaining pulses with fascinating particle-
like properties and technological importance including for lasers
and telecommunications. Early studies of solitons, such as in
optical fibers, assumed a lossless medium and a conservative bal-
ance between dispersive (or diffractive) effects and nonlinearity.
However, it was later discovered that solitons can also form in the
presence of dissipation if an external energy source is continuously
supplied to the system. These dissipative solitons are found in
electrical transport systems, chemical solutions, nerve pulses, and
optical systems [2]. Dissipative solitons in driven optical cavities in
particular have attracted considerable interest because they enable
stable optical frequency combs with large frequency spacings
spanning more than an octave [3–5] for applications in waveform
synthesis, high-capacity telecommunications, astrophysical spec-
trometer calibration, atomic clocks, and dual-comb spectroscopy
[6,7]. Dissipative cavity solitons were studied in fiber cavities
[8–16] before development in micron-scale resonators [17–21]
and most recently in bulk enhancement cavities [22,23].

Solitons in optical resonators are closely related to the soli-
tons in optical fibers and in mode-locked lasers [24] where the

Kerr optical nonlinearity balances with anomalous group-delay
dispersion (GDD) to enable invariant propagation of the wave
packet. The dissipation, which is typically designed to be small
(∼1% in microresonators), plays a relatively minor role in pulse
formation and key pulse parameters can be predicted by neglecting
dissipation [21,25,26]. However, in mode-locked laser cavities
with normal dispersion and a spectral filter, a distinct class of
frequency-chirped soliton can be generated where dissipation is
essential for pulse formation [16,27–30]. In addition to inspir-
ing studies of pulse formation with strong internal energy flows,
chirped-pulse solitons in lasers have benefited applications by
extending pulse generation to normal dispersion systems, enabling
orders of magnitude larger pulse energies [31] and simplifying
amplifier designs [32]. If chirped dissipative solitons can be gen-
erated by driven-resonator systems, opportunities for nonlinear
pattern formation and improvements to performance comparable
to those in chirped-pulse lasers are expected. However, translating
solutions from mode-locked lasers to Kerr resonators is highly
nontrivial; it took three decades to observe an analogy to the tra-
ditional soliton from mode-locked lasers in Kerr resonators. Kerr
resonators are governed by distinct nonlinear differential equations
that support solitons with very different internal energy flows.
Moreover, little is known about the relevant governing nonlinear
equation modeling filtered normal dispersion Kerr resonators.
To date, despite several studies exploring anomalous [33,34] and
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normal [35–45] dispersion cavities, chirped dissipative solitons
have not yet been observed in Kerr resonators. In one notable study,
normal dispersion microresonators were examined with a weak
frequency dependent loss [45]. While the observed temporal signa-
ture is slightly longer (34%) than the transform-limited pulse, the
measurements are consistent with noisy states in Kerr resonators
[46,47], and the drive power is several orders of magnitude lower
than the threshold power for stable chirped dissipative solitons
established in this study.

Here we experimentally and numerically observe chirped dis-
sipative solitons in driven normal dispersion fiber cavities with
specifically designed spectral filtering. In stark contrast to tradi-
tional resonator solitons, chirped solitons are unstable without loss
and are stabilized in resonators with>50% dissipation per round
trip. Numerical simulations reveal stable bright optical pulses with
chirp corresponding to more than twice the linear dispersion of
the cavity and the potential for more than an order of magnitude
higher energies than can be supported by traditional solitons.
Chirped solitons, in agreement with predictions, are observed in
experiments with long normal dispersion fiber cavities driven with
nanosecond pulses. Stable chirped pulse formation in the presence
of such strong dissipation paves the way for realizing high energy
dissipative soliton resonances [48] and exotic nonlinear behavior
such as dissipative soliton explosions [49,50] in passive resonators.
The higher pulse energies enabled by chirped dissipative solitons
can lead to improved resolution, signal-to-noise, and power for
microcomb applications. In fiber resonators, chirped dissipative
solitons offer the potential for generating ultrafast pulses at wave-
lengths where traditional sources cannot, complementing them
for applications including biomedical imaging and spectroscopy.
Finally, bulk normal dispersion cavities with a filter complement
traditional enhancement cavities [22,23] by enabling chirped
dissipative solitons relying on highly dissipative pulse shaping for
improved high harmonic generation, temporal and spectral coher-
ence enhancement, and pulse compression at the highest energy
scales. Scaling laws are developed for designing chirped dissipative
solitons for each of these platforms to enable a broad new range
of system and performance parameters for ultrashort pulse and
frequency comb generation.

2. RESULTS

A. Theory

A passive fiber resonator with normal dispersion and spectral
filtering is analyzed numerically to determine whether chirped
dissipative solitons can be stabilized (see Supplement 1, Section 1).
The cavity consists of normal dispersion fiber, losses, a drive
source, and a spectral filter [Fig. 1(a)]. After the fiber section,
modeled by a detuned nonlinear Schrödinger equation, the
loss, drive, and spectral filter are added as lumped elements
(more details in Supplement 1, Section 1). The spectral filter (a
Gaussian profile with 4 nm bandwidth) is chosen based on the
requirements for a mode-locked fiber laser with the same cavity
length (52.5 m in this case) [29,51]. After fixing the filter, cavity
length, and losses, the simulations are examined as a function of
the remaining variables: the intra-cavity drive peak power and
frequency (cavity detuning). First, the trivial continuous-wave
solutions and solutions that do not converge are indicated by
white regions in Fig. 1(b) (see Supplement 1, Sections 3 and
4). To identify nontrivial solutions, multiple characteristics are

examined, including the spectral bandwidth, peak power, chirp,
and number of prominent intensity peaks (see Supplement 1,
Section 5). The number of peaks in the converged waveform pro-
vides particularly good contrast between different solution types
[Fig. 1(b)]. A variety of stable nontrivial solutions are observed,
including chirped pulses, dark pulses, switching-waves, and
Turing patterns. In Fig. 1(b), the Turing patterns, with more
than eight intensity peaks, are indicated with red points, and
the dark pulses, switching waves, and chirped pulses, which can
occur with a single peak, are indicated with blue points. The dif-
ferent nonlinear solutions can also coexist (see Supplement 1,
Section 6). The chirped dissipative solitons of interest exist over a
broad range of detuning and drive power values, including both
signs of detuning. Note that because the detuning is 2π periodic
in this model, 0 detuning can also be interpreted as −2π detun-
ing from the neighboring resonance. The minimum (threshold)
intra-cavity peak drive power for which chirped pulses are observed
is 5 W, defined as the power that is coupled into the cavity after
a 5% coupler. The dynamics and stability regions of all of the
solutions change significantly when the spectral filter bandwidth
changes. For example, for chirped pulses, the threshold drive power
decreases with narrower filter bandwidths. Moreover, the chirped
pulses are not observed at all with broadband or without spectral
filtering (see Supplement 1, Section 7).

The chirped-pulse solitons rapidly converge to a steady state in
the cavity [Fig. 2(a) and Supplement 1, Section 3]. In the example
illustrated in Fig. 2, the picosecond pulses exhibit a positive chirp
corresponding to 1 ps2 of GDD [Fig. 2(b) and Supplement 1,
Section 1]. This corresponds to more than double the GDD of the
normal dispersion fiber in the cavity, which indicates that the chirp
is the result of nonlinear pulse formation. The dechirped pulse
peak power is enhanced by a factor of∼4 from its value directly out
of the cavity [Fig. 2(c)]. The pulses can be compressed to 0.9 ps,
which is close to the transform-limited pulse duration of 0.82 ps
and indicates that the chirp is nearly linear. The duration and chirp
of chirped dissipative solitons vary depending on the bandwidth of
the spectral filter (see Supplement 1, Section 8).

The spectral bandwidth, temporal duration, and chirp
magnitude evolve nonlinearly in the cavity [Fig. 2(d)]. In the
normal dispersion waveguide, the spectrum experiences a net
broadening due to Kerr self-phase modulation. The temporal
width increases primarily owing to dispersive propagation in
the normal dispersion waveguide. The spectral filter reduces
the spectral bandwidth, and the pulse duration is also reduced
when the high and low frequencies in the leading and trailing
edges of the pulse are attenuated. The pulse is highly chirped
at every point in the cavity. This can also be seen from the posi-
tive slope of the instantaneous frequency on the right of Fig. 2.
The dissipative drive and losses have a negligible effect on the
pulse, spectrum, and chirp. Overall, the qualitative balance
of physical effects is similar to that in chirped-pulse mode-
locked lasers, in which pulse and spectral broadening are also
counteracted by spectral filtering [29,51] (see Supplement 1,
Section 9). However, we note that the continuous-wave back-
ground (absent in mode-locked lasers) has a time-dependent phase
relationship with the chirped pulse, which results in an oscillatory
structure in the time domain that can complicate the interpretation
of the evolution. In this case, the chirped dissipative solitons are
stable despite a total of 69.5% loss in one round trip, which is in
large part due to the spectral filter (the typical loss at the center fre-
quency is 21.5%, corresponding to a Q of 1.3 billion and a finesse
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Fig. 1. Cavity design for chirped dissipative soliton generation and numerical results. (a) Illustration of the key components for observing chirped pulses
in driven resonators, including a normal dispersion waveguide, losses, a drive, and a spectral filter. (b) Converged solutions as a function of intra-cavity drive
power and detuning for an all-normal dispersion cavity. The color map represents the number of prominent peaks on the stable waveform. Specific solutions
are indicated with Roman numerals. (i), (ii) Chirped pulses are observed in a well-defined region of parameter space (pink outline), and (iii) dark pulses,
(iv) switching waves, and (v), (vi) Turing waves are observed elsewhere. (c) The minimum cavity length required for observing chirped solitons (orange)
is determined by the decreasing threshold power (red) and the increasing available peak drive power (yellow) as a function of length. (d) Converged solu-
tions as a function of intra-cavity drive power and detuning comparable to (b) for the cavity with large net-normal dispersion developed experimentally. See
Supplement 1, Section 2 for cavity parameters.

of 26). Depending on the specific cavity arrangement, including
the specific coupling losses and filter bandwidth, chirped dissipa-
tive solitons are observed with at least 92% round trip intra-cavity
losses (see Supplement 1, Section 10).

Simple scaling laws can be developed to identify the cav-
ity parameters necessary to obtain chirped-pulse solutions in
driven-cavity systems. This is achieved by approximating the non-
distributed cavity using a modified form of the well-established
mean-field model for the driven-cavity system, the Lugiato–
Lefever equation (LLE). To account for additional spectral filtering
a term that represents a distributed Gaussian spectral filter is added
(see Supplement 1, Section 11). The normalized equation can be
defined by the following three unitless coefficients related to the
intra-cavity peak drive power, spectral filter bandwidth, and drive
detuning:

Dn0 = D
γ L
α3
, fn0 = f

√
L
∣∣β̄2

∣∣, and δn0 =
δ

α
, (1)

where D is the intra-cavity peak drive power, δ the frequency
detuning, f is the filter bandwidth, L is the cavity length, α
accounts for the cavity losses, γ is the nonlinear coefficient, and is

β2 the average group-velocity dispersion (GDD divided by L). If
chirped dissipative solitons are known to be stable in a particular
cavity with specific values of normalized drive (Dn0), bandwidth
( fn0), and detuning (δn0) coefficients, stable chirped solitons (with
peak power and duration scaled appropriately) can also be obtained
for a different cavity as long as the values for the unitless coefficients
do not change. While chirped pulses may be stable for many dif-
ferent values of these parameters, only one set is needed for design.
The first relationship from Eq. (1) reveals that the required drive
power has an inverse linear dependence on the total cavity non-
linearity (see Supplement 1, Section 12). The second relationship
conveys that the filter bandwidth must scale inversely with the
square root of the total GDD (see Supplement 1, Section 7). Note
that the spectral bandwidth of the solution can be made arbitrarily
broad with the appropriate choice filter. The third relationship
suggests that the same solution can be recovered if the relative
drive frequency scales linearly with the cavity loss. The use of the
approximate mean-field model is validated by the confirmation
of Eq. (1) qualitatively through full numerical simulations (see
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Fig. 2. Characteristics of chirped dissipative solitons in driven optical cavities. (a) Numerical convergence of the pulse energy difference between sub-
sequent round trips,1E , to a stable numerically limited steady-state value. (b) Change in the pulse and peak intensity as a function of group-delay disper-
sion (GDD) applied after the cavity, indicating continuous compression with anomalous dispersion with a maximum at GDD=−1 ps2. (c) Chirped cav-
ity output (black) and dechirped (blue) pulses from (b). (d) Evolution of steady-state chirped dissipative soliton bandwidth [full width at half-maximum,
(FWHM)], temporal width (FWHM), chirp (defined by the GDD required to maximize the pulse intensity, with the opposite sign), and pulse intensity in
the cavity. The FWHM of the pulse after dechirping the pulse at each position of the cavity is plotted in blue. The associated pulse intensity, instantaneous
frequency, power spectrum, and group delay from the indicated locations in the cavity are plotted on the right. The positive slope of the instantaneous fre-
quency, δω, and the negative slope of the spectral group delay correspond to the soliton chirp.

Supplement 1, Sections 7 and 12). These simple relationships pro-
vide general design guidelines for obtaining chirped-pulse solitons
in normal-dispersion driven cavities with a filter.

The chirped dissipative solitons observed numerically require
drive powers that are challenging to obtain experimentally
[Fig. 1(b)]. Numerically, while stable solutions can be obtained
with low drive powers, they exist over a narrow range of param-
eters and may be challenging to observe in practice. In contrast,
at higher drive powers, chirped pulses are stable over a large range
of detuning values and may be more readily observed. This is the
case, for example, in the all-normal dispersion cavity simulated
in Fig. 1(b), with 10 W of intra-cavity drive power. However,
since we are experimentally limited to 0.05 W of intra-cavity drive
power by a 2 W average optical power amplifier, an advance is
needed. Therefore, to experimentally observe chirped solitons,
we design the cavity to have a reduced drive threshold power and
achieve higher drive powers with a pulsed drive source. Driving

passive cavities with pulses is a recently established technique for
achieving higher peak drive powers [12,52,53]. For this technique,
the continuous-wave drive is modulated into a nanosecond pulse
with the repetition rate of the cavity, and then amplified. The peak
drive power increases by an amount that corresponds to the duty
cycle of the drive pulse train (drive pulse duration divided by the
cavity round trip time). The drive pulse duration is fixed and,
since the cavity round trip time increases linearly with the cavity
length, the duty cycle decreases linearly, and, therefore, also the
drive power increases linearly with cavity length (see Supplement 1,
Section 13). In addition, Eq. (1) reveals that the required drive
power threshold can be reduced linearly with an increase in the
total cavity length. Considering both the reduced threshold power
and the increased drive power, we find that stable chirped pulses
should be observable for cavity lengths longer than 150 m, which
corresponds to a threefold increase in drive power and a three-
fold decrease in drive power threshold [Fig. 1(c)]. However, an
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increased cavity length would also increase the total dispersion,
with a corresponding reduction in the bandwidth of the out-
put pulse (see Supplement 1, Section 11). To avoid this loss of
bandwidth, the length of the cavity is increased without changing
the total dispersion with a dispersion-map consisting of two fibers
with opposite signs of dispersion (dispersion management). A
dispersion-managed approach allows for independent control of
the drive power threshold in driven fiber resonators.

A suitable dispersion-managed fiber cavity is numerically mod-
eled to confirm that chirped dissipative solitons are stable in an
experimentally compatible system. To more accurately represent
experimental parameters, the exact super-Gaussian profile of the
bandpass spectral filter and the third-order dispersion of the fibers
are incorporated in the model. Simulations are run for a 150 m

cavity with the same total dispersion as in the all-normal dispersion
cavity from Fig. 1(b). With only subtle differences from the all-
normal dispersion system (see details in Supplement 1, Section 8),
the drive power threshold scales as expected, and stable chirped
dissipative solitons are observed with experimentally accessible
peak drive powers of ∼3 W [Fig. 1(d)]. The numerical results
validate the dispersion-managed cavity approach and motivate
experimental investigation.

B. Experiment

Following the results of numerical simulations, a fiber resonator is
designed to support chirped dissipative solitons [see Fig. 3(a) and
Supplement 1, Sections 1 and 2]. The cavity consists of 150 m total

log-scale (dB) log-scale (dB)

Fig. 3. Experimental schematic and observations of chirped dissipative solitons. (a) Experimental schematic depicting the modulated and amplified
drive, the fiber cavity, the drive feedback loop, and diagnostics. The temporal waveform intensity is indicated throughout in green. Experimentally observed
(b) pulse train, (c) spectrum, (d) cavity resonance with 0.9 W incident average power, and (e), (f ) autocorrelation measurements. The resonance sweep is
measured after a narrow bandpass filter, and the spectrum, pulse train, and autocorrelations are measured after a corresponding narrowband notch filter.
Autocorrelations are measured after amplification as a function of the GDD from a grating pair compressor with the temporal pulse width (1/e 2 of the
maximum width with the root mean square width inset) plotted in (f ). A colored triangle in the upper right corner of the experimental data indicates the
location and type of equipment used to obtain it with a matching triangle in the schematic. Comparable results from numerical simulations are plotted for
the (g) spectrum, (h) resonance sweep, and (i), (j) autocorrelation measurements in blue.
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length of single-mode fiber with large net-normal dispersion and
a 4.25 nm fiber-format spectral filter. The drive is pulsed to enable
access to high intra-cavity powers. The cavity resonance deviates
significantly from a Lorentzian profile at incident average drive
powers larger than 0.15 W, indicating the nonlinear nature of the
resonance [Fig. 3(d)]. The equivalent numerical resonance agrees
well with the experiment [Fig. 3(h)]. See Supplement 1, Sections 1,
2 and 14 for additional information.

Stable and reproducible chirped-pulse solutions are obtained
with adjustment of the drive frequency, power, polarization, and
pulse period as follows. With 0.9 W of average drive power incident
on the cavity, the pump pulse period is matched to the 1.33 MHz
repetition rate of the cavity, and the drive frequency (detuning) and
polarization are swept through their range until broad-bandwidth,
stable mode-locking is achieved. The polarization and detuning
are varied in a process similar to that in fiber lasers mode-locked
with nonlinear polarization evolution, in which three or four
polarization wave plates are rotated through their range until stable
mode-locking is achieved. The stable output optical spectrum fea-
tures a unique profile characteristic of the simulated chirped pulses
from region (ii) in Fig. 1(d) [Fig. 3(c)]. The spectra quantitatively
agree with theory including small sidebands 2 nm shifted from the
center wavelength and an rms bandwidth of 1.2 nm [Fig. 3(g)].
Small variations of these values can also be observed. The spectrum
is measured after a fiber Bragg filter, resulting in the modulation
in the center of the spectrum. The pulse train, observed with an
oscilloscope, consists of pulses regularly spaced in time with the
cavity round trip period and energy fluctuations of less than 0.7%
[Fig. 3(b)]. To evaluate the output pulse chirp, the pulses are ampli-
fied and dechirped by a grating pair compressor and measured with
a collinear intensity autocorrelator (see Supplement 1, Section 15).
The autocorrelation width reduces to a minimum value before
increasing again with further application of anomalous dispersion,
which indicates positive chirp [Figs. 3(e) and 3(f )]. This change in
duration on application of quadratic spectral phase also indicates
a stable spectral phase, in contrast to noisy incoherent fields for
which a autocorrelation measurement yields a coherence spike
that does not respond to the application of a grating pair compres-
sor (such as in Refs. [46,47]). The minimum duration (1.08 ps
FWHM) corresponds to a GDD of 1.5 ps2, which is 3 times the
cavity GDD and indicates that the chirp is the result of nonlinear
pulse formation. Comparable autocorrelations of numerically sim-
ulated chirped dissipative solitons agree well with the experimental
observations [Figs. 3(i) and 3(j)].

3. DISCUSSION

The presented theoretical model does not account for the role of
polarization dynamics in the cavity. Interactions between distinct
polarizations can lead to modulation instability, which will affect
the initiation of pulses in the cavity [54,55]. Polarization dynam-
ics can also lead to intensity-dependent losses and are likely to
influence pulse formation. Experiments suggest the relevance of
polarization dynamics because pulse initiation and the character
of the steady-state solutions are affected by the orientation of the
polarization controllers. It will be valuable to account for the effects
of polarization with a vectorized numerical model, which includes
the orthogonal fiber polarization states as well as linear and non-
linear coupling [47,56]. Experimentally, additional stability and
control of the solutions may be obtained by using a polarization

controller in the single-mode fiber cavity or by replacing the
single-mode cavity fiber with polarization-maintaining fiber.

Chirped dissipative solitons in normal dispersion resonators
with a spectral filter are related to previously investigated nonlinear
solutions in resonators without a filter as well (see Supplement 1,
Section 16). At low powers in the fiber resonator and the LLE,
dark pulses with a well-defined single trough are stable [33,35]. At
higher drive powers and detuning values, the width and complex-
ity of the dark pulse increases. Complex dark pulses with a long
duration appear less like dark pulses and more like interlocking
switching waves, which has been established as the theoretical
basis for this class of solutions in the LLE [35]. At higher powers,
dark pulses become unstable in the LLE and in simulations of the
fiber cavity. However, when a weak spectral filter is added to the
resonator (a 20 nm bandwidth for the 52.5 m cavity considered
here), the long complex dark pulses (switching waves) begin to shift
in parameter space and are stable at an order of magnitude higher
powers. With a stronger 4 nm filter, the switching waves shift to
even higher drive powers. With this strong filter, chirped pules
begin to become stable along the same line in parameter space, but
at drive powers that are as much as a hundred times higher than the
powers needed for dark pulses in resonators without a filter. These
bright pulses can no longer be interpreted as long-duration dark
pulses because they have a well-defined pulse width, which is main-
tained regardless of the number of pulses observed. The bandwidth
of the chirped pulse is broad compared to the other solutions, and
the spectral phase has a clear quadradic component, which defines
the chirp. However, while these solutions are distinguished from
dark pulses, the interlocking switching-wave description may be
relevant and merits further investigation. Interestingly, chirped-
pulse solitons in mode-locked lasers can also be interpreted as
the intersection of switching-wave solutions. The cubic-quintic
Ginzburg–Landau equation that governs mode-locked lasers pos-
sesses chirped-pulse solutions that are well described analytically
by the intersection of two propagating front solutions [57]. This
common description may relate chirped dissipative solitons in pas-
sive resonators to chirped solitons in mode-locked lasers further,
in addition to their comparable chirp, parameter requirements,
and evolution. Further research into the formation and stability
mechanisms of chirped dissipative solitons in passive cavities and
their relationship to other normal dispersion solutions is needed.

In addition to strong spectral filtering, bright pulse solutions
can also be enabled in the normal dispersion regime through
interactions between different transverse mode families [39,41] as
well as through higher-order dispersive and Raman interactions
[58–61]. For example, in Ref. [58], bright pulse solutions are
demonstrated through driving in the normal dispersion regime,
with a strong contribution from higher-order dispersion. In this
case, although the drive is in the normal dispersion regime, the
pulse resides predominantly in the anomalous dispersion regime
due to a spectral recoil induced by dispersive wave emission. In
contrast, through strong spectral filtering, stable pulse formation
is possible at very large net dispersion through the unique mech-
anisms described here. Spectral filtering enables highly chirped
pulses for which nonlinear phase is directly compensated by nor-
mal dispersion. In addition, unlike bright pulses formed through
alternate mechanisms, chirped pulses are stable despite large
dissipation and can exhibit large intra-cavity dynamics.

Chirped dissipative solitons in normal dispersion resonators
with a spectral filter have a higher drive threshold power than tradi-
tional solitons. In this work, chirped pulses were observed with 2 W
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of average power (before the cavity), through the combination of a
long fiber cavity and a pulsed drive. However, certain applications
may require smaller average powers for pulse (comb) generation.
The peak power of the drive is determined by the average power
times the ratio of the drive pulse duration over the cavity round
trip time. This peak power is currently limited by the duration of
the drive pulse, which is limited by our pulse generator to>10 ns.
This duration can be decreased to 100 ps with a suitable generator,
which will decrease the average power threshold of the system by
2 orders of magnitude. In addition, the threshold power can be
decreased further with narrower bandwidth spectral filters (see
Supplement 1, Section 7). With both improvements, chirped
dissipative solitons can be generated in fiber resonators with mW
drive power.

Broad bandwidth is important for the frequency comb as well as
for ultrashort pulse applications. The chirped pulses observed here
have bandwidth corresponding to picosecond pulse durations. The
soliton bandwidth can be increased by decreasing the total disper-
sion and by applying a correspondingly larger bandwidth spectral
filter (see Supplement 1, Section 7). The scaling laws predict that
the soliton bandwidth increases in proportion to the inverse of
the square root of the cavity GDD if the spectral filter bandwidth
is increased with the same proportion. In other words, 10 times
broader soliton bandwidth should be possible with a cavity GDD
that is 100 times smaller and a spectral filter with 10 times broader
bandwidth than the present configuration.

For a given bandwidth, the energy of the pulse determines
important parameters for applications, including the pulse peak
power, the frequency comb power-per-comb line, and the con-
version efficiency. Since chirped solitons in mode-locked lasers
have higher energies than solitons in anomalous dispersion laser
cavities, it will be important to determine if a similar benefit
can be achieved for passive cavities. In passive cavities, the pulse
energy is challenging to measure accurately because it is difficult
to accurately determine the total number of pulses and residual
continuous-wave background complicates the interpretation of
average power measurements. These challenges can potentially
be addressed through seeding the cavity with an external source
and with background management techniques; this is the sub-
ject of ongoing research. In addition, numerical simulations can
provide important information about the pulse energy, including
the potential enhancements compared to traditional solitons and
opportunities for further increases (see Supplement 1, Section 17).
For example, the energy of the simulated chirped solitons corre-
sponding to experimental observations is 25 pJ. In a controlled
numerical comparison between traditional solitons in anoma-
lous dispersion cavities and chirped solitons in normal dispersion
cavities, we find that chirped pulses can have at least seven times
more energy (see Supplement 1, Section 17, Fig. S16). By driving
normal dispersion resonators with higher powers, the energy of
stable chirped dissipative solitons can be increased by at least 2
times more. Alternatively, optimizing for peak power instead of
energy, we find that chirped dissipative solitons can support at least
an order of magnitude higher peak powers than traditional solitons
given an equivalent magnitude of GDD. The simulated results are
encouraging, highlight the promise of chirped dissipative solitons
for applications, and motivate further research.

In passive resonators, the resonance frequencies are sensitive
to environmental perturbations including vibrations and tem-
perature. Moreover, the drive laser frequency must be locked with

respect to these resonances. Therefore, the stability of frequency
comb generation is proportional to the strength of environmental
perturbations and the quality of the frequency locking mechanism.
The resonator investigated in this study features minimal tempera-
ture and vibration control, a limited laser frequency tuning range,
a free-running drive repetition rate, and a single-stage side-lock
proportional–integral–derivative (PID) controller feedback loop.
Stable frequency comb generation in this nonideal configuration
lasts for several minutes. However, with several improvements,
including temperature and vibration control, an additional feed-
back loop to control for large frequency changes by thermally
tuning the laser, locking the drive repetition rate to the cavity,
and peak-locking techniques, stable frequency combs should
be generated over significantly longer periods, with minimal
variation.

Stretched-pulse mode-locking has been recently demonstrated
in a fiber Kerr resonator [62] after the results from the present
manuscript were posted as a preprint [63]. The stretched-pulse
and chirped-pulse regimes of operation are each characterized
by clear qualitative features in the system itself as well as in the
pulsed solutions, are readily distinguished, and possess unique
practical benefits. The stretched-pulse regime requires two sections
of fiber with near equal dispersion but with opposite signs and a
total dispersion that is slightly anomalous, in contrast to the large
normal dispersion and lack of need for anomalous dispersion for
the chirped pulses. Chirped-pulse temporal and spectral profiles
are critically dependent on the application of a spectral filter, and
without the presence of a spectral filter, no chirped pulses are stable
at all (Supplement 1, Section 7). In contrast to chirped pulses,
stretched pulses are uniquely defined by their Gaussian spectral
and temporal profiles. Stretched pulses stretch and compress twice,
the chirp is both positive and negative, and the pulse is transform-
limited twice in the cavity whereas chirped pulses only increase
in duration once, have only high and positive chirp, and are never
transform-limited in the cavity. Stretched-pulse solitons balance
nonlinear phase with the net effective anomalous dispersive phase
in the cavity whereas chirped pulses balance both amplitude and
phase modulations with the pulse chirp enabling the dispersion to
have both amplitude and phase contributions in the time domain
and the nonlinearity to have both amplitude and phase contri-
butions in the spectral domain. The filter plays a critical role in
completing this amplitude and phase balance for the chirped pulse
(see Supplement 1, Section 9 for complete details). Regarding
benefits for applications, stretched pulses enable ultrashort pulsed
performance because the total dispersion is near zero and chirped
pulses can tolerate more than an order of magnitude higher pulse
energies, as detailed in Supplement 1, Section 17.

Chirped dissipative solitons represent a new class of stable
nonlinear waveforms in driven resonators that enable opportuni-
ties for nonlinear pattern formation and enhanced performance
regimes for frequency comb and ultrashort pulse generation and
associated applications. The present study focuses specifically
on fiber resonators, but the results are general and can be applied
to any passive resonator platform using the scaling laws given by
Eq. (1). Chirped dissipative solitons enable enhanced performance
for microcomb devices and enable femtosecond pulse generation
in fiber at wavelengths not accessible by traditional mode-locked
lasers. For bulk enhancement cavities, chirped dissipative solitons
can enhance the performance of high harmonic generation and
pulse compression at higher energy levels. Finally, stable dissipative
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soliton formation in the presence of large dissipation motivates
investigations of qualitative new phenomena including dissipative
soliton resonances and intra-cavity soliton explosions in simple
passive resonators.

Funding. National Institute of Biomedical Imaging and Bioengineering
(R01EB028933).

Disclosures. The authors declare no conflicts of interest.

Data Availability. Data underlying the results presented in this paper are not
publicly available at this time but may be obtained from the authors upon reason-
able request.

Supplemental document. See Supplement 1 for supporting content.

REFERENCES
1. N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to

Biology andMedicine (Springer Berlin Heidelberg, 2008).
2. H. G. Purwins, H. U. Bodeker, and S. Amiranashvili, “Dissipative

solitons,” Adv. Phys. 59, 485–701 (2010).
3. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and

T. J. Kippenberg, “Octave spanning tunable frequency comb from a
microresonator,” Phys. Rev. Lett. 107, 063901 (2011).

4. Y. K. Chembo and N. Yu, “On the generation of octave-spanning
optical frequency combs using monolithic whispering-gallery-mode
microresonators,” Opt. Lett. 35, 2696–2698 (2010).

5. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta,
“Octave-spanning frequency comb generation in a silicon nitride chip,”
Opt. Lett. 36, 3398–3400 (2011).

6. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky,
“Dissipative Kerr solitons in optical microresonators,” Science 361,
eaan8083 (2018).

7. A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based fre-
quency combs,” Nat. Photonics 13, 158–169 (2019).

8. M. Nakazawa, K. Suzuki, and H. Haus, “Modulational instability oscil-
lation in nonlinear dispersive ring cavity,” Phys. Rev. A 38, 5193–5196
(1988).

9. M. Haelterman, S. Trillo, and S. Wabnitz, “Additive-modulation-
instability ring laser in the normal dispersion regime of a fiber,” Opt.
Lett. 17, 745–747 (1992).

10. M. Haelterman, S. Trillo, and S. Wabnitz, “Dissipative modulation insta-
bility in a nonlinear dispersive ring cavity,” Opt. Commun. 91, 401–407
(1992).

11. J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Ultraweak long-
range interactions of solitons observed over astronomical distances,”
Nat. Photonics 7, 657–663 (2013).

12. M. Anderson, F. Leo, S. Coen, M. Erkintalo, and S. G. Murdoch,
“Observations of spatiotemporal instabilities of temporal cavity
solitons,” Optica 3, 1071–1074 (2016).

13. J. K. Jang, M. Erkintalo, S. Coen, and S. G. Murdoch, “Temporal tweez-
ing of light through the trapping andmanipulation of temporal cavity soli-
tons,” Nat. Commun. 6, 7370 (2015).

14. F. Leo, S. Coen, P. Kockaert, S. P. Gorza, P. Emplit, and M. Haelterman,
“Temporal cavity solitons in one-dimensional Kerr media as bits in an all-
optical buffer,” Nat. Photonics 4, 471–476 (2010).

15. J. K. Jang, M. Erkintalo, J. Schroder, B. J. Eggleton, S. G. Murdoch, and
S. Coen, “All-optical buffer based on temporal cavity solitons operating
at 10 Gb/s,” Opt. Lett. 41, 4526–4529 (2016).

16. M. Haelterman, S. Trillo, and S. Wabnitz, “Hopf sideband bifurcation and
chaos in fiber lasers with injected signal,” Phys. Rev. A 47, 2344–2353
(1993).

17. J. S. Levy, A. Gondarenko, M. Foster, A. C. Turner-Foster, A. L. Gaeta,
and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for
on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2009).

18. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little,
and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric
oscillator,” Nat. Photonics 4, 41–45 (2010).

19. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T.
J. Kippenberg, “Optical frequency comb generation from a monolithic
microresonator,” Nature 450, 1214–1217 (2007).

20. A. Savchenkov, A. Matsko, V. Ilchenko, I. Solomatine, D. Seidel, and L.
Maleki, “Tunable optical frequency comb with a crystalline whispering
gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).

21. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L.
Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical
microresonators,” Nat. Photonics 8, 145–152 (2014).

22. N. Lilienfein, C. Hofer, M. Högner, T. Saule, M. Trubetskov, V. Pervak,
E. Fill, C. Riek, A. Leitenstorfer, J. Limpert, F. Krausz, and I. Pupeza,
“Temporal solitons in free-space femtosecond enhancement cavities,”
Nat. Photonics 13, 214–218 (2019).

23. V. L. Kalashnikov, “Femtosecond pulse enhancement in an external
resonator: impact of dispersive and nonlinear effects,” Appl. Phys. B 92,
19–23 (2008).

24. L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13–15
(1984).

25. S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency
combs,” Opt. Lett. 38, 1790–1792 (2013).

26. W. H. Renninger and P. T. Rakich, “Closed-form solutions and scaling
laws for Kerr frequency combs,” Sci. Rep. 6, 24742 (2016).

27. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion
femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).

28. W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in
normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).

29. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-
dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140–148
(2008).

30. W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolu-
tion in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top.
Quantum Electron. 18, 389–398 (2012).

31. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion
femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32,
2408–2410 (2007).

32. W. H. Renninger, A. Chong, and F. W. Wise, “Giant-chirp oscillators for
short-pulse fiber amplifiers,” Opt. Lett. 33, 3025–3027 (2008).

33. C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability
analysis of the spatiotemporal Lugiato-Lefever model for Kerr opti-
cal frequency combs in the anomalous and normal dispersion regimes,”
Phys. Rev. A 89, 063814 (2014).

34. D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp,
“Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).

35. P. Parra-Rivas, D. Gomila, E. Knobloch, S. Coen, and L. Gelens, “Origin
and stability of dark pulse Kerr combs in normal dispersion resonators,”
Opt. Lett. 41, 2402–2405 (2016).

36. W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B.
Matsko, and L. Maleki, “Generation of a coherent near-infrared Kerr
frequency comb in a monolithic microresonator with normal GVD,” Opt.
Lett. 39, 2920–2923 (2014).

37. B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C. Joshi, M.
Lipson, and A. L. Gaeta, “Turn-key, high-efficiency Kerr comb source,”
Opt. Lett. 44, 4475–4478 (2019).

38. X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang, D. E. Leaird,
M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in
normal-dispersionmicroresonators,” Nat. Photonics 9, 594–600 (2015).

39. J. K. Jang, Y. Okawachi, M. Yu, K. Luke, X. Ji, M. Lipson, and A. L.
Gaeta, “Dynamics of mode-coupling-inducedmicroresonator frequency
combs in normal dispersion,” Opt. Express 24, 28794–28803 (2016).

40. X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M.
Weiner, “Normal-dispersion microcombs enabled by controllable mode
interactions,” Laser Photon. Rev. 9, L23–28 (2015).

41. V. E. Lobanov, G. Lihachev, T. J. Kippenberg, and M. L. Gorodetsky,
“Frequency combs and platicons in optical microresonators with normal
GVD,” Opt. Express 23, 7713–7721 (2015).

42. A. Fülöp, M. Mazur, A. Lorences-Riesgo, T. A. Eriksson, P.-H. Wang, Y.
Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-
Company, “Long-haul coherent communications using microresonator-
based frequency combs,” Opt. Express 25, 26678–26688 (2017).

43. B. Garbin, Y. Wang, S. G. Murdoch, G.-L. Oppo, S. Coen, and M.
Erkintalo, “Experimental and numerical investigations of switching
wave dynamics in a normally dispersive fiber ring resonator,” Eur. Phys.
J. D 71, 240 (2017).

44. X. Xue, M. Qi, and A.M.Weiner, “Normal-dispersionmicroresonator Kerr
frequency combs,” Nanophotonics 5, 244–262 (2016).

https://doi.org/10.6084/m9.figshare.14515077
https://doi.org/10.1080/00018732.2010.498228
https://doi.org/10.1103/PhysRevLett.107.063901
https://doi.org/10.1364/OL.35.002696
https://doi.org/10.1364/OL.36.003398
https://doi.org/10.1126/science.aan8083
https://doi.org/10.1038/s41566-019-0358-x
https://doi.org/10.1103/PhysRevA.38.5193
https://doi.org/10.1364/OL.17.000745
https://doi.org/10.1364/OL.17.000745
https://doi.org/10.1016/0030-4018(92)90367-Z
https://doi.org/10.1038/nphoton.2013.157
https://doi.org/10.1364/OPTICA.3.001071
https://doi.org/10.1038/ncomms8370
https://doi.org/10.1038/nphoton.2010.120
https://doi.org/10.1364/OL.41.004526
https://doi.org/10.1103/PhysRevA.47.2344
https://doi.org/10.1038/nphoton.2009.259
https://doi.org/10.1038/nphoton.2009.236
https://doi.org/10.1038/nature06401
https://doi.org/10.1103/PhysRevLett.101.093902
https://doi.org/10.1038/nphoton.2013.343
https://doi.org/10.1038/s41566-018-0341-y
https://doi.org/10.1007/s00340-008-3064-9
https://doi.org/10.1364/OL.9.000013
https://doi.org/10.1364/OL.38.001790
https://doi.org/10.1038/srep24742
https://doi.org/10.1364/OE.14.010095
https://doi.org/10.1103/PhysRevA.77.023814
https://doi.org/10.1364/JOSAB.25.000140
https://doi.org/10.1109/JSTQE.2011.2157462
https://doi.org/10.1109/JSTQE.2011.2157462
https://doi.org/10.1364/OL.32.002408
https://doi.org/10.1364/OL.33.003025
https://doi.org/10.1103/PhysRevA.89.063814
https://doi.org/10.1038/s41566-017-0009-z
https://doi.org/10.1364/OL.41.002402
https://doi.org/10.1364/OL.39.002920
https://doi.org/10.1364/OL.39.002920
https://doi.org/10.1364/OL.44.004475
https://doi.org/10.1038/nphoton.2015.137
https://doi.org/10.1364/OE.24.028794
https://doi.org/10.1002/lpor.201500107
https://doi.org/10.1364/OE.23.007713
https://doi.org/10.1364/OE.25.026678
https://doi.org/10.1140/epjd/e2017-80133-7
https://doi.org/10.1140/epjd/e2017-80133-7
https://doi.org/10.1515/nanoph-2016-0016


Research Article Vol. 8, No. 6 / June 2021 / Optica 869

45. S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L.
Kwong, L. Maleki, and C. W. Wong, “Mode-locked ultrashort pulse gen-
eration from on-chip normal dispersion microresonators,” Phys. Rev.
Lett. 114, 053901 (2015).

46. M. Erkintalo and S. Coen, “Coherence properties of Kerr frequency
combs,” Opt. Lett. 39, 283–286 (2014).

47. S. Coulibaly, M. Taki, A. Bendahmane, G. Millot, B. Kibler, and M. G.
Clerc, “Turbulence-induced rogue waves in Kerr resonators,” Phys. Rev.
X 9, 011054 (2019).

48. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev,
“Dissipative soliton resonances,” Phys. Rev. A 78, 23830 (2008).

49. J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creep-
ing, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85,
2937–2940 (2000).

50. S. T. Cundiff, J. M. Soto-Crespo, and N. Akhmediev, “Experimental evi-
dence for soliton explosions,” Phys. Rev. Lett. 88, 739031 (2002).

51. W. H. Renninger and F. W. Wise, “Fiber lasers,” in Dissipative Soliton
Fiber Lasers (Wiley-VCH Verlag GmbH &Co. KGaA, 2012), pp. 97–133.

52. E. Obrzud, S. Lecomte, and T. Herr, “Temporal solitons in microres-
onators driven by optical pulses,” Nat. Photonics 11, 600–607
(2017).

53. M. Malinowski, A. Rao, P. Delfyett, and S. Fathpour, “Optical frequency
comb generation by pulsed pumping,” APL Photon. 2, 066101 (2017).

54. M. Haelterman, S. Trillo, and S. Wabnitz, “Polarization multistability and
instability in a nonlinear dispersive ring cavity,” J. Opt. Soc. Am. B 11,
446–456 (1994).

55. J. Fatome, B. Kibler, F. Leo, A. Bendahmane, G.-L. Oppo, B. Garbin,
S. G. Murdoch, M. Erkintalo, and S. Coen, “Polarization modulation

instability in a nonlinear fiber Kerr resonator,” Opt. Lett. 45, 5069–5072
(2020).

56. G. P. Agrawal,Nonlinear Fiber Optics (Academic, 2007).
57. J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz,

“Pulse solutions of the cubic-quintic complex Ginzburg-Landau equa-
tion in the case of normal dispersion,” Phys. Rev. E 55, 4783–4796
(1997).

58. Z. Li, Y. Xu, S. Coen, S. Murdoch, and M. Erkintalo, “Experimental
observations of bright dissipative Kerr cavity solitons and their col-
lapsed snaking in a driven resonator with normal dispersion,” Optica 7,
1195–1203 (2020).

59. Y. Xu, A. Sharples, J. Fatome, S. Coen, M. Erkintalo, and S. G. Murdoch,
“Frequency comb generation in a pulse-pumped normal dispersion Kerr
mini-resonator,” Opt. Lett. 46, 512–515 (2021).

60. P. Parra-Rivas, S. Coulibaly, M. G. Clerc, and M. Tlidi, “Influence of
stimulated Raman scattering on Kerr domain walls and localized
structures,” Phys. Rev. A 103, 013507 (2020).

61. P. Parra-Rivas, D. Gomila, and L. Gelens, “Coexistence of stable dark-
and bright-soliton Kerr combs in normal-dispersion resonators,” Phys.
Rev. A 95, 053863 (2017).

62. X. Dong, Q. Yang, C. Spiess, V. G. Bucklew, and W. H. Renninger,
“Stretched-pulse soliton Kerr resonators,” Phys. Rev. Lett. 125, 033902
(2020).

63. C. Spiess, Q. Yang, X. Dong, V. G. Bucklew, and W. H. Renninger,
“Chirped temporal solitons in driven optical resonators,”
arXiv:1906.12127 (2019).

https://doi.org/10.1103/PhysRevLett.114.053901
https://doi.org/10.1103/PhysRevLett.114.053901
https://doi.org/10.1364/OL.39.000283
https://doi.org/10.1103/PhysRevX.9.011054
https://doi.org/10.1103/PhysRevX.9.011054
https://doi.org/10.1103/PhysRevA.78.023830
https://doi.org/10.1103/PhysRevLett.85.2937
https://doi.org/10.1103/PhysRevLett.88.073903
https://doi.org/10.1038/nphoton.2017.140
https://doi.org/10.1063/1.4983113
https://doi.org/10.1364/JOSAB.11.000446
https://doi.org/10.1364/OL.400474
https://doi.org/10.1103/PhysRevE.55.4783
https://doi.org/10.1364/OPTICA.400646
https://doi.org/10.1364/OL.413585
https://doi.org/10.1103/PhysRevA.103.013507
https://doi.org/10.1103/PhysRevA.95.053863
https://doi.org/10.1103/PhysRevA.95.053863
https://doi.org/10.1103/PhysRevLett.125.033902

