
PHYSICAL REVIEW A 86, 063820 (2012)

Controllable vacuum Rabi splitting and optical bistability of multi-wave-mixing
signal inside a ring cavity
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We theoretically demonstrate the influence of dark and bright states on vacuum Rabi splitting (VRS) and
optical bistability (OB) of the multi-wave-mixing (MWM) process in a collective four-level atomic-cavity
coupling system. We numerically investigate the multidressed VRS and OB behavior of the zero- and high-order
transmitted cavity modes of MWM signals. A further study demonstrates that VRS and self-Kerr nonlinearity
OB can coexist and compete with each other in a cascade relationship, based on which we achieve the goal to
control VRS and OB simultaneously through the dark state in the atomic system.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) [1–3] can
effectively decrease the absorption of incident beams and has
been researched since it may have potential applications in
slow light [4], photon generation, transmission and informa-
tion storage [5,6], quantum communication [7], and nonlinear
optics and wave-mixing processes [8]. Dark state and EIT
can be used in quantum interference and result in form-stable
coupled excitations of light and matter associated with the
propagation of quantum fields under EIT, which have been
termed dark-state polaritons [9].

Moreover, vacuum Rabi splitting (VRS) [10] has been
reported in a strongly coupled single two-level atom-cavity
system [11], where the frequency distance of the VRS is given
by 2g with single-atom coupling strength g. When N two-level
atoms collectively interact with the cavity mode [12], the
coupling strength can be increased as G = g

√
N and the

distance of VRS for the collectively coupled atom-cavity
system will be 2G [13].

Recently, studies on atom-cavity interactions have been
extended to a more composite system with an optical cavity
and coherently prepared multilevel atoms [14], in which a
narrow central peak was observed beside two broad sidebands
(representing VRS) and can be well explained by the
intracavity dispersion properties [15]. When the atom-cavity
interaction reaches the “superstrong-coupling” condition with
atom-cavity coupling strength G to be near or larger than
the cavity free spectral range, multi-normal-mode splitting
can be observed and well explained by the linear-dispersion
enhancement due to the largely increased atomic density in
the cavity [16,17].

Inspired by the intracavity phenomenon that quantum bright
correlated light beams can be produced by driving an optical
parametric oscillator (OPO) above its threshold [18,19], the
bright correlated beams with off-resonance four-wave mixing
(FWM) process have also been experimentally demonstrated
[20]. In addition, experimental studies of coherently prepared
atoms confined in a cavity have led the observations of the
EIT line width narrowing [21] and coherent control of optical
bistability (OB) and multistability [22].
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On the other hand, the dressed MWM process in the
corresponding EIT window has attracted a lot of attention
in the past several years [23,24]. Recently, we have observed
Autler-Townes (AT) splitting of the four-wave mixing (FWM)
signals with dressing effects [25,26] generated in a multilevel
atomic system. We have also observed the evolution of the
enhancement (bright state) and suppression (dark state) in
FWM processes by controlling the frequency detuning of
the additional laser field [27,28]. Considering the origin of
VRS and OB, and the application of the dark state in the
MWM process, we deduce that dark and bright states can
affect the properties of VRS and OB behavior in our proposed
atom-cavity system and make that the focus of our research.

In this paper, we first investigate the relationship of VRS
and OB of cavity MWM signals and achieve the goal to
control VRS and OB simultaneously through the coherent
control of dark and bright states, and get the inclined VRS.
Studies on the multidressed VRS and OB behavior of the
zero- and high-order transmitted cavity MWM signal in the
coupled system consisting of a specific ring cavity and reverse
Y-type four-level atoms assembly are presented, with VRS
coming from the atom-cavity collective effect induced by high
atom density, while OB behavior comes from the self-Kerr
nonlinearity effect (feedback effect); the influences of dark and
bright states are involved in detail. In addition, we show the
linear gains and thresholds for the generated bright correlated
light beams in lambda (�) and cascade (�) subsystems in
an OPO process and further discuss the OB thresholds in
our optical parametric amplification (OPA) MWM process,
which can bring about interesting applications in quantum
information processing.

This paper is organized as follows. In Sec. II, we describe
the basic theory for this work. In Sec. III, we first show the
multidressed VRS of the transmitted cavity MWM signal in
the linearity situation and the corresponding avoided-crossing
plots with suppression and enhancement of the generated
MWM signal in cavity. In Sec. IV, we present the high-order
mode splitting and avoided-crossing plots of the transmitted
cavity MWM signal with or without another dressing effect.
These phenomena result from the atom-cavity collective effect
and superstrong-coupling strength. In Sec. V, we show the
linear gains and thresholds for the generated bright correlated
light beams in the OPO process. In Sec. VI, we show the OB
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FIG. 1. (Color online) (a) A schematic diagram of a ring cavity
containing the four-level atoms coupled with coherent external probe
and control fields. The optical cavity length, which is fixed on atomic
transition frequency, can be adjusted by a PZT mounted on the mirror
M4. The frequency of the input laser (as probe light) is scanned to
measure the transmission spectra. (b) Scheme of four-level atomic
system.

behavior of the zero- and high-order transmitted cavity MWM
signal resulting from the self-Kerr nonlinearity effect of the
MWM field. Finally, in Sec. VII, we give the conclusion.

II. BASIC THEORY

We theoretically study a cavity-atom coupling system con-
sisting of rubidium atoms confined in the four-mirror-formed
mode volume with a length of Lc = 17 cm [Fig. 1(a)]. The
mirrors M3 and M1 are input and output mirrors with a radius
of 50 mm, whose reflectance r3 (r1) and transmittance t3 (t1)
fulfill the condition r2

i + t2
i = 1 (i = 1,3), while the mirrors

M2 and M4 are high-quality reflectors. Cavity frequency
scanning and locking can be implemented by a piezoelectric
transducer (PZT) behind M4. The length of the rubidium vapor
cell including the Brewster windows is La = 7 cm. The cell
is wrapped in μ-metal sheets to shield from external magnetic
fields and a heat tape is placed outside the sheets for controlling
the temperature to influence the atomic density. Since we do
not consider Doppler effects in this paper, our analysis is also
suitable for the ring or standing-wave cavity.

A reverse-Y energy level system as shown in Fig. 1(b)
is constructed with four energy levels [|0〉5S1/2(F = 3),
|1〉5P3/2, |2〉5D5/2, |3〉5S1/2(F = 2)]. In this atomic system,
a horizontally polarized weak probe field E1 (frequency ω1,
wave vector k1, and Rabi frequency G1) probes the lower
transition |0〉 → |1〉. Two vertically polarized coupling fields
E2 (ω2, k2, and G2) and E′

2 (ω2, k′
2, and G′

2) propagate in
the opposite direction of E1, and drive the upper transition
|1〉 → |2〉. Two additional vertically polarized coupling fields
E3 (ω3, k3, and G3) and E′

3 (ω3, k′
3, and G′

3) propagate in
the same direction as E1, and drive the transition |3〉 → |1〉.
There will be two EIT windows in ladder-type subsystems
|0〉 → |1〉 → |2〉 and |0〉 → |1〉 → |3〉, both satisfying the
two-photon Doppler-free condition. Moreover, there will be
two four-wave mixing (FWM) processes, EF2 (satisfying
kF2 = k1 + k2 − k′

2) and EF3 (kF3 = k1 + k′
3 − k3); and

four six-wave mixing (SWM) processes, ES2 (kS2 = k1 +
k′ + k′

3 − k3 + k2 − k2), E′
S2 (k′

S2 = k1 + k′
3 − k3 + k′

2 −
k′

2), ES3 (kS3 = k1 + k2 − k′
2 + k3 − k3), and E′

S3 (k′
S3 =

k1 + k2 − k′
2 + k′

3 − k′
3), generating in this system, which

are all horizontally polarized. Such MWM signals propagate

in the same direction as E′
3, and can circulate in the ring

cavity according to the cavity configuration. In our model the
total electromagnetic field can be written as E = Epeiω1t +
E2e

iω2t + E∗
2eiω2t + E3e

iω3t + EF eiω1t + ESe
iω1t + c.c. Gen-

erally, the density matrix elements related with FWM
(SWM) signals can be obtained by solving the density-matrix
equations. Especially, when E3 (E′

3) are blocked, via the

simple perturbation chain ρ
(0)
00

ω1−→ ρ
(1)
10

ω2−→ ρ
(2)
20

−ω2−−→ ρ
(3)
10 , we

can obtain the simple third-order density element ρ
(3)
F2 =

GF2/[d2d
2
1 ] for EF2 (its intensity IF2 ∝ |ρ(3)

F2|2), where GF2 =
−iG1G2(G′

2)∗ exp(ikF2 · r), d1 = �10 + i�1, and d2 = �20 +
i(�1 + �2); �i = �i − ωi is frequency detuning with reso-
nance frequency �i and �ij is the transverse relaxation rate
between states |i〉 and |j 〉. If E2 (or E′

2) is strong enough,

via the singly dressed perturbation chain ρ
(0)
00

ω1−→ ρ
(1)
G2±0

ω2−→
ρ

(2)
20

−ω2−−→ ρ
(3)
G2±0, we can obtain the singly dressed third-order

density element ρ
(3)
SDF2 = GF2/[d2(d1 + |G2|2/d2)2] for EF2

(the intensity IF2 ∝ |ρ(3)
SDF2|2). In the dressed FWM processes

EF2, E2 (or E′
2) not only generates but also dresses the

signal EF2, so we refer to this dressing effect as the internal
dressing. Then with E3 turned on, the simple SWM process

can be described by the perturbation chain ρ
(0)
00

ω1−→ ρ
(1)
10

−ω3−−→
ρ

(2)
30

ω3−→ ρ
(3)
10

ω2−→ ρ
(4)
20

−ω2−−→ ρ
(5)
10 , and the corresponding den-

sity element is ρ
(5)
S3 = GS3/[d2d3d

3
1 ] for ES3 (its intensity

IS3 ∝ |ρ(5)
S3 |2), where GS3 = iG1G2(G′

2)∗G3G
∗
3 exp(ikS3 · r)

and d3 = �30 + i(�1 − �3). If E2 (or E′
2) and E3 are

all strong enough, the doubly dressed EF2 [internal- and
external-dressing effects of E2 (or E′

2) and E3, respec-
tively] and ES3 [internal-dressing effect of both E2 (or
E′

2) and E3] can be generated simultaneously. Via the per-

turbation chains ρ
(0)
00

ω1−→ ρ
(1)
(G2±G3±)0

ω2−→ ρ
(2)
20

−ω2−−→ ρ
(3)
(G2±G3±)0

and ρ
(0)
00

ω1−→ ρ
(1)
(G2±G3±)0

−ω3−−→ ρ
(2)
30

ω3−→ ρ
(3)
(G2±G3±)0

ω2−→ ρ
(4)
20

−ω2−−→
ρ

(5)
(G2±G3±)0, we can obtain the doubly dressed density elements

ρ
(3)
DDF2 = GF2/[d2(d1 + |G2|2/d2 + |G3|2/d3)2] for EF2 (its

intensity IF2 ∝ |ρ(3)
DDF2|2) and ρ

(5)
DDS3 = GS3/[d2d3(d1 +

|G2|2/d2 + |G3|2/d3)3] for ES3 (the intensity IS3 ∝ |ρ(5)
DDS3|2).

The two doubly dressed MWM signals can be distinguished
in different EIT windows. Next, we set the rubidium atomic
gas cell in the ring cavity [Fig. 1(a)], in which the cavity
polariton is formed in the interaction between the cavity mode
and the N identical atoms with four energy levels. The identical
atom assemblies are most easily described as a homogeneously
broadened medium in the small-gain limit. Set a as the cavity
field, coupled with the transition |0〉 → |1〉, to form the cavity
mode with the generated FWM (SWM) signal according to the
cavity configuration. Under the weak-cavity field limitation
and with all the atoms initially in the ground state |0〉, if the
system is in equilibrium state, the transmitted cavity mode
induced by FWM (SWM) and doubly dressed by E2 (or E′

2)
and E3 can be obtained as

aFWM = −g
√

NGF (S)

d4

(
d1 + g2N

d4
+ |G2|2

d2
+ |G3|2

d3

) , (1)

where d4 = i (�1 − �ac) + γ .
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FIG. 2. (Color online) (a) Theoretically calculated transmitted cavity FWM (SWM) spectra versus �1 for �ac = 0. (a1) Normal VRS when
the powers of coupling fields E2 and E′

2 are relatively weak and E3 and E′
3 are blocked; (a2) and (a3) the AT splitting based on normal VRS

when the power of E2 (or E′
2) is strong enough and E3 and E′

3 are blocked for (a2) �2/�20 = −100 and (a3) �2/�20 = 100, respectively;
(a4) and (a5) the AT splitting effect of the transmitted cavity FWM (SWM) when the powers of E2 (or E′

2) and E3 are sufficiently strong
and E′

3 is blocked for (a4) �2/�20 = −100, �3/�20 = −100, and (a5) �2/�20 = −100, �3/�20 = 120, respectively. (b) Theoretical plots
of intracavity dispersion curves (solid curves); absorption (dashed curves); and detuning lines (dotted lines) versus �1 corresponding to (a).
(c) Dressed-state energy level diagrams corresponding to (a).

III. VRS OF ZERO-ORDER MODE

In this section, we discuss multidressed VRS of zero-order
cavity mode (single-mode) of the MWM process in the
coupled atom-cavity system based on the master equation
formalism theory. This phenomenon is derived from the
atom-cavity coupling effect, reflected mainly by g2N in the
denominator in Eq. (1), which shows a self-dressing effect
for both coming from the atom-cavity coupling effect and
dressing the cavity field in return. Meanwhile, we also analyze
the related suppression (dark state) and enhancement (bright
state) phenomena by scanning the frequency detuning of one
dressing field.

A. Multidressed VRS

In this part, we show the normal VRS and the AT splitting
based on VRS of the transmitted cavity MWM signal by

scanning the probe detuning. Figure 2 is the transmitted cavity
spectra versus the probe frequency detuning while the cavity
field is tuned to resonate with the atomic transition |0〉 → |1〉
(�ac = 0). First, when E2 and E′

2 are turned on but the their
powers are relatively weak [i.e., not considering the dressing
effect of E2(E′

2)] as shown in Fig. 2(a1), the transmitted
cavity FWM spectrum exhibits two peaks (representing two
cavity-atom polaritons), forming normal VRS of atom-cavity
system with separation 2g

√
N in frequency due to the self-

dressing effect of g2N (atom-cavity coupling effect). The
two eigenvalues corresponding to dressed states |±〉 induced
by g2N are λ± = ±g

√
N (due to �ac = 0, measured from

|1〉) after diagonalizing the interaction Hamiltonian. The two
peaks of the transmitted cavity FWM signal [Fig. 2(a1)]
correspond, from left to right, to the dressed states |+〉 and |−〉,
respectively [Fig. 2(c1)]. Next, when the power of E2 becomes
so strong that its dressing effect must be taken into account
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and its frequency matches the polariton resonance [�2 =
−g

√
N = −100�20 and �2 = g

√
N = 100�20 in Figs. 2(a2)

and 2(a3), respectively], the AT splitting effect based on the
VRS is induced. Due to the dressing effects of g2N and
E2, the two-peak spectrum in Fig. 2(a1) turns into a three-
peak spectrum in Figs. 2(a2) and 2(a3). When E2 resonates
with the dressed state |−〉 with �2 = −g

√
N = −100�20,

a pair of new dressed states |− ±〉 appears as shown in
Fig. 2(c2), and the corresponding eigenvalues are λ−± = ±G2

(measured from |−〉) with separation 2G2. When E2 couples
with the dressed state |+〉 with �2 = g

√
N = 100�20, the

dressed states |+ ±〉 appear as shown in Fig. 2(c3), and the
corresponding eigenvalues are λ+± = ±G2 (measured from
|+〉) with separation 2G2. The three peaks of the transmitted
cavity FWM signal in Figs. 2(a2) and 2(a3) correspond, from
left to right, to the dressed states |+〉, |− +〉, |− −〉 [Fig. 2(c2)]
and |++〉, |+ −〉, |−〉 [Fig. 2(c3)], respectively. Finally, with
the field E3 turned on and set as a strong field, the dressing
effect of E3 must be considered. As a result, the triply dressed
transmitted cavity FWM (SWM) signal with four peaks is
obtained, as shown in Figs. 2(a4) and 2(a5). The four peaks
in Fig. 2(a4), from left to right, correspond to the dressed
states |+ +〉, |+ −〉, |− +〉 and |− −〉, where the dressed
state |+〉 induced by g2N is split into |+ +〉, |+ −〉 by
E3 (�3 = −g

√
N = −100�20) with eigenvalues λ+± = ±G3

(measured from |+〉), while |−〉 is split into |− +〉, |− −〉 by
E2 (�2 = −g

√
N = −100�20) with eigenvalues λ−± = ±G2

(measured from |−〉), respectively, as shown as Fig. 2(c4).
However, the four peaks in Fig. 2(a5), from left to right,
correspond to the dressed states |+〉, |− +〉, |− −+〉, and
|− −−〉, where |−〉 is split into |− +〉, |− −〉 by E2 (�2 =
−g

√
N = −100�20) with λ−± = ±G2 (measured from |−〉),

and further |− −〉 is split into |− −+〉 and |− −−〉 by E3

(�3 = g
√

N + G2 = 120�20) with λ−−± = ±G3 (measured
from |− −〉), as shown in Fig. 2(c5). Here, we only give
the resonant case, in which the dressing field resonates with
either naked energy level or the dressed energy level dressed
by another dressing field, and other cases without resonant
splitting can also be obtained by adjusting the frequency
detuning of the dressing fields.

Moreover, since the transmitted cavity FWM (SWM)
signal can be determined by the corresponding absorption
and dispersion characteristics [15], now we analyze the
cavity transmission signals via the intracavity dispersion
curves (solid), absorption curves (dashed), and detuning
lines (dotted) shown in Figs. 2(b1)–2(b5), corresponding to
Figs. 2(a1)–2(a5). Generally, the intersecting points of the
detuning line and dispersion curve represent corresponding
peaks in transmission spectra. In Fig. 2(b1), there are three
intersecting points, while in the transmitted cavity spectrum
in Fig. 2(a1), there are only two peaks corresponding to the
bilateral intersections in Fig. 2(b1). The disappearance of the
peak corresponding to the middle intersecting point results
from the larger absorption [dashed curve in Fig. 2(b1)] at
�1/�20 = 0. For the other cases shown as Figs. 2(b2)–2(b5),
corresponding to Figs. 2(a2)–2(a5), the explanations are the
same as that for Fig. 2(b1). The analysis above indicates that
the explanation from the dressing energy diagram in Fig. 2(c)
is in accordance with that from the intracavity dispersion and
absorption properties in Fig. 2(b).

FIG. 3. (Color online) The transmitted cavity FWM (SWM) sig-
nal as a function of �1 and different frequency detunings of dressing
field for �2 (a), �3 (b), and �ac [(c) and (d)], respectively, when
E′

3 is blocked. The parameters used in the theoretical plots are (a)
�3/�20 = 200, (b) �2/�20 = 200, (c) �2/�20 = �3/�20 = 200,
and (d) �2/�20 = 200, �3/�20 = −120.

B. Avoided-crossing plots

In order to investigate the transmitted cavity signals
influenced by the probe field and the other coupling field
simultaneously, we present the avoided-crossing plots in detail.
Figure 3 shows the transmitted cavity FWM (SWM) signal
as a simultaneous function of �1 and different frequency
detunings of dressing fields. The typical avoided-crossing
shape in each plot clearly expresses the dark and bright states
in the transmitted process in the atom-cavity system. For
instance, when scanning �1 and �2 with other detunings fixed,
as illustrated in Fig. 3(a), the cavity field induces the primary
splitting (VRS); E3 induces the secondary splitting (AT
splitting, corresponding to �1/�20 = 200), and E2 induces the
triple splitting with minimal distance at �2 = −�1 = g

√
N ,

−g
√

N + G3, and −g
√

N − G3 from left to right, by scanning
�1 (horizontal axis). Simultaneously, by scanning �2 (vertical
axis), the transmitted cavity FWM (SWM) signal is suppressed
(dark state) along the dotted dividing line �1 + �2 = 0, which
exactly satisfies the suppression condition resulting from the
dressing effect of E2 in this process. Similarly, by scanning
�1 and �3 [Fig. 3(b)], and �1 and �ac [Figs. 3(c) and
3(d) with different �2 and �3], the transmitted cavity FWM
(SWM) signals are suppressed significantly at �1 − �3 = 0
(suppression condition from the dressing effect of E3) and
�1 − �ac = 0 (from the self-dressing effect of g2N ) along
the dividing lines in Figs. 3(b)–3(d), respectively.

C. Suppression and enhancement of MWM

We next study the suppression (dark state) and enhance-
ment (bright state) effect of the transmitted cavity signal of
doubly dressed FWM and triply dressed FWM (SWM) in an
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(b1)

(a1) (a2) (a3)

(b2) (b3)

FIG. 4. (Color online) (a) The transmitted cavity spectra of the generated FWM (or SWM) dressed by fields a and E2 (E′
2) (a1), and fields

a, E2 (E′
2), and E3 [(a2) and (a3)] versus �2 [(a1) and (a2)] and �3 (a3) with different �1. The dashed profiles are cavity transmission signals

versus �1. (b1)–(b3) The dressed energy level diagrams of the cavity transmission signal corresponding to (a1)–(a3).

atom-cavity system by scanning �2 or �3 at different �1
/
�20,

illustrated in Figs. 4(a1)–4(a3). The baselines represent the
transmitted cavity signal undressed by the scanning field. We
call the dips lower than the baselines as suppression and peaks
higher than the baselines as enhancement.

Figure 4(a1) shows the suppression and enhancement of
the transmitted cavity signal dressed by g2N and E2(E′

2)
when �2 is scanned at different �1 within an atom-cavity
subsystem |0〉 − |1〉 − |2〉 (FWM signal EF2) with E3 and E′

3
blocked. The dashed double-peak global profile in Fig. 4(a1),
induced by g2N , is the cavity transmitted FWM signal
without the dressing effect of E2(E′

2). If �1 is set from
negative to positive, the cavity transmitted FWM signal shows
the evolution from all enhancement (�1/�20 = −700), to
left enhancement and right suppression (�1/�20 = −331),
to all suppression (�1/�20 = −257), to left suppression
and right enhancement (�1/�20 = −200), to all suppression
(�1/�20 = 0), to left enhancement and right suppression
(�1/�20 = 198), to all suppression (�1/�20 = 257), to left
suppression and right enhancement (�1/�20 = 325), to all
enhancement (�1/�20 = 700), as shown in Fig. 4(a1). Such
evolution is caused by the interaction between the dressing
fields g2N and E2 (E′

2). Here we only take curve (1) in
Fig. 4(a1) to analyze in detail. Under the self-dressing effect of
g2N , |1〉 will be split into two dressed states |±〉, and |+〉 will
be split into two secondary-dressed states | + ±〉 in the region
�1 < 0 by E2 (E′

2). For the curve (1) (�1/�20 = −331), the
transmitted cavity signal can resonate with | + +〉 when �2 is
scanned if the enhancement condition �1 + λ+ + λ++ = 0
is satisfied, where λ+ = g

√
N and λ++ = (�2 − λ+)/2 +√

(�2 − λ+)2/4 + |G2|2, and then two-photon resonance of

the transmitted cavity signal occurs if the suppression con-
dition �1 + �2 = 0 is satisfied. As a result, the transmitted
cavity signal shows left enhancement and right suppression,
as illustrated by curve (1) and Fig. 4(b1). Other curves in
Fig. 4(a1) showing different suppression and enhancement
can be explained similarly to curve (1), so we only give their
suppression (due to two-photon resonance) and enhancement
(due to the resonance with dressed states) conditions as �1 +
�2 = 0 and �1 + λ+ + λ+± = 0 for �1 < 0, and �1 + �2 =
0 or �1 + λ− + λ−± = 0 for �1 > 0, where λ± = ±g

√
N and

λ±± = (�2 − λ±)/2 ±
√

(�2 − λ±)2/4 + |G2|2. The results
of Fig. 4(a1) in �1 < 0 and �1 > 0 regions have symmetric
centers �1/�20 = ∓257, respectively, where the transmitted
cavity signals are all purely suppressed.

Next we study the transmitted cavity signal triply dressed
by g2N , E2(E′

2), and E3 when �2 is scanned at different �1

within an atom-cavity system [Fig. 1(b)] with E′
3 blocked as

shown in Fig. 4(a2). The dashed triple-peak global profile
is the transmitted cavity FWM (SWM) signal induced by
g2N and E3 when scanning �1 without the dressing effect
of E2 (E′

2). The three peaks correspond to the dressed states
|+〉 and |− ±〉, where the dressing effect of E3 splits the state
|−〉, dressed by g2N , into |− ±〉. The results by scanning �2 at
different �1 show similar evolution with Fig. 4(a1), except that
two symmetric centers (�1/�20 = 226 and �1/�20 = 360)
exist in the region �1 > 0, caused by the interaction of
the three dressing fields g2N , E3, and E2 (E′

2). Since the
analysis method is similar to that used in Fig. 4(a1), here
we give a dressed energy diagram [Fig. 4(b2)] corresponding
to curve (2) to prove the left suppression and right enhance-
ment. The enhancement conditions are �1 + λ+ + λ+± = 0
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for �1 < 0 with λ+ = g
√

N and λ+± = (�2 − λ+)/2 ±√
(�2 − λ+)2/4 + |G2|2, and �1 + λ− + λ−+ + λ−+± = 0

or �1 + λ− + λ−− + λ−−± = 0 for �1 > 0 with λ− =
−g

√
N , λ−± = −(�3 + λ−)/2 ±

√
(�3 + λ−)2/4 + |G3|2,

and λ−±± = (�2 − λ−±)/2 ±
√

(�2 − λ−±)2/4 + |G2|2 due
to the cavity transmitted signal resonating with the dressed
state. The suppression condition is �1 + �2 = 0 for both
�1 < 0 and �1 > 0 due to two-photon resonance.

Finally, we study the triply dressed transmitted cavity
FWM (SWM) process when �3 is scanned to discuss the
suppression and enhancement effect, as shown in Fig. 4(a3).
When �1 is scanned without the dressing effect of E3, the
transmitted cavity FWM (SWM) spectrum with three peaks
induced by g2N and E2 (E′

2) is obtained, as the dashed curve
in Fig. 4(a3). These three peaks correspond to the dressed
states |+±〉 and |−〉, where the dressing effect of E2(E′

2)
splits the state |+〉, induced by g2N , into |+±〉. The results
by scanning �3 at different �1 in Fig. 4(a3) show an opposite
evolution to Fig. 4(a2), because the transmitted cavity FWM
(SWM) field forms a �-type subsystem [Fig. 4(a3)] with E3

while a ladder-type subsystem [Fig. 4(a2)] is formed with
E2 (E′

2). They have two symmetric centers (�1/�20 = −357
and �1/�20 = −270) in the region �1 < 0 caused by the
interaction between the three dressing fields g2N , E2 (E′

2),
and E3, and one symmetric center (�1/�20 = 286) in the
region �1 > 0 caused by the interaction between g2N and
E3. In this case, the enhancement condition is �1 + λ+ +
λ++ + λ++± = 0 or �1 + λ+ + λ+− + λ+−± = 0 for �1 < 0
with λ+ = g

√
N (induced by g2N ), λ+± = (�2 − λ+)/2 ±√

(�2 − λ+)2/4 + |G2|2 [induced by E2(E′
2)] and λ+±± =

−(�3 + λ+±)/2 ±
√

(�3 + λ+±)2/4 + |G3|2 (induced by
E3), and �1 + λ− + λ−± = 0 for �1 > 0 with λ− =
−g

√
N (induced by g2N ) and λ−± = −(�3 + λ−)/2 ±√

(�3 + λ−)2/4 + |G3|2 (induced by E3). The suppression
condition is �1 − �3 = 0 for both �1 < 0 and �1 > 0. Here,
we also give the corresponding energy level diagram to explain
the curve (3) in Fig. 4(a3).

IV. VRS OF HIGH-ORDER MODES

In order to study the splitting of high-order cavity modes
(multinormal mode), we adopt the intensity transmission
coefficient of generated FWM (SWM) field for the coupled
atoms-cavity system to discuss the splitting positions by the
dressing-state theory.

The cavity transmission coefficient of FWM (SWM) field
is given by [16,17]:

T = (t3t1)2e−αLa

(1 − r3r1e−αLa/2)2 + 4r3r1e−αLa/2 sin2
(

φ

2

) , (2)

where φ(ωF (S)) = 2π (�ac − �1)/�FSR + (n − 1)LaωF (S)/c

is the round-trip phase shift experienced by the intracavity field
around the cavity with free spectral range (FSR) of the empty
optical cavity �FSR = 2π/(Lc/c) and the speed of light in
vacuum c. The terms α = 2(ωF (S)/c)Im[(1 + χ )1/2] and n =
Re[(1 + χ )1/2] are the absorption coefficient and reflective
index of the medium, respectively, with the susceptibility χ

of the medium. In this section, we only consider the linear

susceptibility, which can be derived by the master equation as

χ = 2g2NLc

LaωF (S)

i

d1 + |G2|2 /d2 + |G3|2 /d3
. (3)

The theory of the equations above can be used to discuss the
splitting positions of high-order cavity modes together with
the dressing-state theory in the coupled atoms-cavity system.

Figure 5 gives the transmission spectra, containing splitting
positions and height of the multimode, of the generated FWM
(SWM) when �ac = 0 and the power of coupling fields
[E2 (E′

2) and E3] are relatively weak (i.e., not considering
their dressing effects) with the increment of the atomic density
of the medium. For an empty cavity, the cavity transmission
peaks are Lorentzian in shape and have equal mode spacings
(�FSR), as shown by the dashed curves in Fig. 5(a). When the
coupling strength g

√
N increases to near or larger than �FSR

induced by the increased atomic density of the medium in
cavity, the transmission spectra can be modified significantly:
Not only the zero-order longitudinal mode (m = 0) is split
(0±) with symmetrical center �1 = 0, but also high-order
modes (m = ±1, ±2, etc.) are split (1±, −1±, 2±, −2±,
etc.) with symmetrical center �1 = −m�FSR/2 by the cavity
field as the solid curves shown in Fig. 5(a). We introduce
the dressing-state theory in order to understand the splitting
positions of the cavity modes, still considering g2N from the
atom-cavity coupling effect as a dressing field. When a is
coupled with a random cavity mode (m = 0, ±1, ±2, etc.),
and after diagonalizing the interaction Hamiltonian for this
atom-cavity system, the two eigenvalues corresponding to
the splitting positions of peaks m± are derived as λ

(m,�ac)
m± =

−(�ac + m�FSR)/2 ±
√

(�ac + m�FSR)2/4 + g2N

measured from cavity mode m, which means the two peaks
located at �

(m,�ac)
1 = −m�FSR − λ

(m,�ac)
m± relative to the

position of m. Especially, when a resonates with zero-order
mode (m = 0, �ac = 0), the splitting positions become
�

(0,0)
1 = −λ

(0,0)
0± = ∓g

√
N and �

(1,0)
1 = −�FSR − λ

(1,0)
1± =

−�FSR/2 ∓
√

�2
FSR/4 + g2N corresponding to the peaks of

the zero-order cavity mode and the first-order mode, which has
obvious symmetrical centers �1 = 0 and �1 = −�FSR/2,
respectively, and is in accordance with the results in Fig. 5(a).
In addition, when the cavity field a resonates with other
cavity modes such as m = 1 (�ac = −�FSR), the splitting
positions are �

(0,−�FSR )
1 = −λ

(0,−�FSR )
0± = −�FSR/2 ∓√

�2
FSR/4 + g2N and �

(1,−�FSR )
1 = −�FSR − λ

(1,−�FSR )
1± =

−�FSR ∓ g
√

N corresponding to the two peaks of zero-order
and first-order cavity modes. Such results demonstrate that
�

(1,0)
1 = �

(0,−�FSR )
1 , which means the positions of the two

splitting peaks of first-order mode when a resonates with
zero-order mode are the same as that of zero-order mode
when a resonates with first-order mode, as shown in Fig. 5(b).
Figure 5(b) presents the cavity transmitted FWM (SWM)
signal as a function of �1 and �ac, with the increment of the
atomic density of the medium from (b1) to (b3). They are
typical avoided-crossing plots which show the splitting of the
multimode due to the cavity field scanned along the horizontal
axis. The smallest splitting distance is at �ac/�20 = 0 for
zero-order mode, �ac/�20 ≈ 1000 for negative first-order
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FIG. 5. (Color online) (a1)–(a4) Solid curves are transmission spectra of the generated FWM (SWM) when �ac = 0 and the powers of
coupling fields [E2 (E′

2) and E3] are relatively weak with the atomic density of the medium increasing. Dashed curves are the transmission
spectra of empty cavities. The illustrations (a2′)–(a4′) show MWM transmissions in smaller regions corresponding to (a2)–(a4). (b1)–(b3)
Avoided-crossing plots with increment of the atomic density of the medium. (c) The corresponding dressed energy level diagram of the system.

mode, �ac/�20 ≈ −1000 for first-order mode, etc., and all
increases with the accretion of the atomic density of the
medium.

Next, we discuss the same case as Fig. 5 except that the
power of E2 (E′

2) is sufficiently strong to reveal its dressing
effect on cavity transmission signal with �2 = 0, as shown
in Fig. 6. Compared with the cavity transmission spectrum in
Fig. 5, the result in Fig. 6 shows an additional peak at �1 ≈ 0
due to the frequency pulling and absorption suppression
corresponding to the intracavity dark state at �1 ≈ −�2 = 0.
With the coupling strength g

√
N increasing to near or larger

than �FSR , not only the zero-order mode (m = 0) is split
into three peaks (0± and 00), but also high-order modes
(m = ±1, ±2, etc.) are split into three peaks (1± and 10,
−1± and −10, 2± and 20, −2± and −20, etc.) by g2N and
E2 (E′

2), and every pair of m± has a symmetrical center �1 =
−m�FSR/2, shown as the solid lines in Fig. 6(a). We can apply
dressing-state theory to explaining the positions of the splitting
peaks as well for random cavity mode m. After diagonalizing
the interaction Hamiltonian for this atom-cavity system, in
which g2N and E2 (E′

2) are considered as dressing fields and
coupled with the random cavity mode (m = 0, ± 1, ± 2, etc.),
we can obtain the three eigenvalues as λ

(m,�ac)
m± = −(�ac +

m�FSR)/2 ±
√

(�ac + m�FSR)2/4 + g2N + |G2|2 and

λ
(m,�ac)
0 = −(�ac + m�FSR) measured from cavity mode

m. Thus the m-order cavity mode can be split into
three peaks including two side peaks m± located at
�

(m,�ac)
1 = −m�FSR − λ

(m,�ac)
m± and a narrow peak m0 located

at �(m,�ac)
1 = −m�FSR − λ

(m,�ac)
0 under superstrong-coupling

condition. Similarly, we can also deduce �
(1,0)
1 = �

(0,−�FSR )
1 ,

which means the positions of the two side peaks of the
first-order mode when a resonates with zero-order mode are
the same as that of the zero-order mode when a resonates
with first-order mode, as can be demonstrated in Fig. 6(b).
Figure 6(b) gives the cavity transmitted FWM (SWM) signal
as a function of �1 and �ac with the atomic density increasing
from (b1) to (b3). Similarly, they are avoided-crossing plots
of the multimode, except for an additional peak at �1 ≈ 0
due to the dressing effect of E2 (E′

2), compared with that in
Fig. 5(b).

V. STEADY-STATE LINEAR GAIN AND OPO THRESHOLD

The four-level inverted-Y system in Fig. 1(b) also may lead
to three possibilities of fluorescence generation corresponding
to the lambda (�) subsystem (|0〉 → |1〉 → |3〉 with E1 and E3

on) and two cascade (�) subsystems (|0〉 → |1〉 → |2〉 with
E1 and E2 on; |3〉 → |1〉 → |2〉 with E3 and E2 on). When
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FIG. 6. (Color online) The figure setup is as Figs. 5(a) and 5(b) except that the power of E2 (E′
2) is sufficiently strong.

the fluorescence interacts with the cavity mode, the bright
correlated anti-Stokes and Stokes light beams are generated
[29]. We set up the theoretical model to obtain the steady-
state linear gain for these generated paired beams in the above
atom-cavity subsystems and get corresponding thresholds.

First we discuss the �-type subsystem in which E1

resonates with transition |0〉 → |1〉, E3 resonates with |3〉 →
|1〉, and cavity field a is coupled with the two transitions so
that the bright correlated light beams R3 from |1〉 to |3〉 and

R1 from |1〉 to |0〉 can circulate in the cavity. Similar to the
generation of a single bright beam [29], the two beams can
couple and influence each other due to the crossed energy level
for stimulation and generation. With a further consideration
of the degeneracy and the collisions effect between |3〉 and
|0〉 for preventing the optical pumping to |3〉, and under the
steady-state approximation, we can obtain the linear gain from
the coefficient of a in the expression ig

√
Nρ10 and ig

√
Nρ13

as

G�
10 = −2g2N

{
2G2

1γ30t + G3 (G1 + G3) [2�30 (γ10 + γ30 − γ03) − γ03t] + �13�30γ30t
}

{
[2sG1 + �10h]

(
G2

1 + �13�30
) + [

2qG2
1 + �13h

] (
G2

3 + �10�30
) − x + G2

1G
2
3 (−6γ30 + 12�30 + 2t − 6γ03)

}
G1

,

(4a)

G�
13 = −g2N

{
3G2

3γ03t + G1 (G1 + 2G3) [2�30 (γ03 + γ13 − γ30) − γ30t] + �10�30γ03t
}

[2sG1 + �10h]
(
G2

1 + �13�30
) + [

2qG2
1 + �13h

] (
G2

3 + �10�30
) − x + G2

1G
2
3 (−6γ30 + 12�30 + 2t − 6γ03)

, (4b)

where h = γ03γ10 + γ03γ13 + γ10γ30 + γ13γ30, q = γ10 + 2γ03 + γ30, s = γ13 + γ03 + 2γ30, x = �10�13�30h, and t = γ10 + γ13.
There will be linear gain for both the bright correlated light beams when G�

10 > 0 and G�
13 > 0 are simultaneously satisfied,

which means that the two beams can both oscillate above these two thresholds with narrowed linewidths when we adjust G1 and
G3. We create a possible method to control the experimental conditions to satisfy the thresholds condition from Eqs. (4), in which
�30 should be very small so that it can be neglected and γ10 + γ13 + 6�30 > 3(γ03 + γ30) to guarantee positive denominators.
Moreover, a crucial requirement is that [2p2/(1 + p)] < [γ3/γ30] < [(p2 + 2p)/3] where p = G1/G3 (0 < p < 1 or p > 2),
which provides two possible ways to be experimentally achieved. When in the boundary of thresholds, we can hold G1 as a
constant while increasing G3 with G3 > G1, or we can hold G3 as a constant while increasing G1 with G1 > 2G3.
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A �-type subsystem |0〉 → |1〉 → |2〉, in which E1 resonates with |0〉 → |1〉, E2 resonates with |2〉 → |1〉, and
cavity field a couples with the two transitions, leads to the similar result that bright correlated light beams R2 from |2〉
to |1〉 and R1 from |1〉 to |0〉 can circulate and affect each other in the cavity. Meanwhile, we also assume the conditions
ρ00 + ρ11 + ρ22 = 1, ρ10 = −ρ01, and ρ21 = −ρ12. Considering an approximation of the neglected crossed influence of the
cavity field, we get the steady-state linear gain as

G�
10 = g2N

{
3γ21G

2
1n + �21�20γ21n + G2

2 [γ03(γ10 − γ21) + 2�20n]
}

[
2(γ03 + 2γ21)G2

1 + �10l
] (

G2
1 + �21�20

) + [
2uG2

2 + �21l
] (

G2
2 + v

) − �21vl + G2
2G

2
1 (−6γ03 + 12�20 + 2j )

, (5a)

G�
21 = g2N

{
3γ03G

2
2j + �20�10γ03j + G2

1 [γ21(2γ03 − γ10) + 2�20(2γ03 − γ21)]
}

[
2(2γ03 + 3γ21)G2

1 + �10l
] (

G2
1 + v

) + [
2uG2

2 + �21l
] (

G2
2 + �20�10

) − �10vl + G2
1G

2
2 (16�20 − 8γ03 + 2j )

, (5b)

where l = γ10γ03 + γ10γ21 + γ03γ21, u = 2γ03 + γ10, v =
�21�20, j = γ10 − γ21, and n = γ03 − γ10 for simplification.
Similarly, to observe the two bright correlated light beams,
it requires G�

10 > 0 and G�
21 > 0 and then it can be easily

concluded that γ03 > γ10 > γ21 is necessary with 6�20 +
γ10 > 3γ03 + γ21 for G�

10 > 0 while 8�20 + γ10 > γ21 + 4γ03

is necessary for G�
21 > 0. It indicates that when it meets

the demands of the thresholds above, two bright correlated
light beams can oscillate simultaneously by increasing G1

and G2 or by just increasing one of them. Analogically,
we can also get the gain and threshold of the other �

subsystem |3〉 → |1〉 → |2〉 so here we do not show more
details.

It is known that the three pairs of fluorescence signals can
amplify the injected vacuum field in free space. Similarly, if
a MWM signal is injected and interacts with the fluorescence
signals, it can be amplified as well. In our atom-cavity system
(Fig. 1), if considering the bright correlated light beams [29],
an OPA process will occur when we inject the FWM and
SWM signals. The FWM and SWM signals can be amplified
and squeezed better in the interaction with the bright correlated
light beams, which can lead to a two-mode squeezing process
between FWM and SWM signals, and this kind of squeeze can
be used in quantum entanglement processing.

VI. OB BEHAVIOR OF MWM

In this section, in order to get a more comprehensive
understanding of the intracavity influence of dark and bright
states in the MWM process, we further study the OB behavior
resulting from the self-Kerr nonlinear effect in the atom-cavity
system as shown in Fig. 1(a). Considering relatively large
self-Kerr nonlinearity susceptibility, which mainly functions
as an un-neglected feedback effect (also a self-dressing effect)
of the cavity in the MWM process, we investigate the OB
phenomenon based on master equation formalism and the
cavity transmission coefficient and conclude that there is
coexistence and cascade competition of the VRS and OB
behavior.

A. OB of zero-order mode

First, we analyze OB behavior of the zero-order mode
based on the master equation formalism theory. Since the
generated FWM (SWM) field can circulate in the ring cavity

while the probe field and other coupling fields cannot, we
only consider the generated FWM (SWM) field to form a
cavity mode. Clearly, the generated FWM (SWM) cavity mode
has a self-dressing effect of |GF|2, which is derived from the
relatively strong feedback effect. This self-dressing effect has
similar influence with the self-dressing effect of g2N , the
internal-dressing effects of |G2|2, and the external-dressing
effect of |G3|2, which can together result in a close interaction
between VRS and OB. Here, we take the transmitted cavity
FWM signal, for example, which can be obtained from Eq. (1)
as

aFWM ∝ ig
√

NG1G2(G′
2)∗

d4d2(d1)2
(
d1 + g2N

d4
+ |G2|2

d2
+ |G3|2

d3
+ |GF|2

�00

) , (6)

where the internal-dressing effect of E2 and the external-
dressing effect of E3 are both included when the powers of
E2 and E3 are sufficiently strong. For a perfectly tuned ring
cavity, the output intensity Io (a function in proportion, not the
experimental output intensity) of the transmitted cavity FWM
field is proportional to |aFWM |2, while the input intensity Ii of
the incident field is proportional to |G1|2. So the input-output
relationship can be expressed as

Io

Ii

∝
∣∣∣∣ig

√
NG2(G′

2)∗
[
d4d2d

2
1

(
d1 + g2N

d4

+ |G2|2
d2

+ |G3|2
d3

+ Io

�00

)]−1
∣∣∣∣∣
2

, (7)

where Io on the right-hand side describes the feedback effect
of the cavity for the transmitted cavity signal. There is a
cascade relationship between Io and g2N on the right-hand
side of Eq. (7), with Io, coming from |GF|2, serving as the
essential feedback effect in the origin of OB while g2N serves
as the essential atom-cavity coupling effect in the origin of
VRS. Such relationship indicates the cascade coexistence and
competition between OB and VRS.

We numerically study the input-output intensity relation-
ship under the steady-state condition with relatively weak
E2 field and without E3 field as shown in Fig. 7, which
displays OB behavior of the transmitted cavity FWM signal
influenced by Ii and �1. Here the mode splitting is different
from the normal VRS (only from g2N in Sec. III) because
the modes after splitting are all inclined for the feedback
effect (self-dressing effect); however, the major splitting law
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FIG. 7. (Color online) Observed input-output intensity relation-
ship of the system with probe detuning �1/�20 scanned when
only zero-order cavity mode is considered, and E2 (E′

2) is relatively
weak while E3 and E′

3 are blocked. (a) FWM transmission output
changes with both probe detuning and probe input intensity; (b)
FWM transmission output with probe detuning at different probe
input intensity Ii/�2

20 = 0.1,1,10 from inside to outside; (c) OB
at different probe detunings �1/�20 = 4.5 (dashed), �1/�20 = 4.7
(dotted), and �1/�20 = 4.9 (solid); (d) probe input intensity versus
�1/�20 with the dots of the upper branch standing for the right OB
threshold of the OPA FWM process and the dots of the lower branch
standing for the left one.

is just the same with VRS. The inclined VRS results from the
relatively large feedback effect (|GF|2) and g2N , leading to
the conclusion that there exists a strong cascade interaction
between VRS and OB. Figure 7(a) illustrates the intensity of
the output transmitted cavity FWM signal as the functions of
Ii and �1, which reveals the OB threshold of the OPA FWM
process and hysteresis cycle obviously with the variation of
�1. These modulations of the VRS in frequency domain and
input-output relationship (OB behavior) simultaneously result
from the significant change of the absorption and dispersion
characteristics of the medium. In detail, Fig. 7(b) shows the
transmitted cavity FWM signal expanding rapidly with Ii

increasing when �1 is scanned. Increased |�1| results in a
significant change of the OB behavior and the increasing of
the right OB threshold as in Fig. 7(c). Figure 7(d) displays
the OB threshold values versus �1, in which the left OB
threshold value shifts slowly while the right one shifts sharply.
Moreover, Fig. 7(d) also demonstrates that the OB always
exists in a certain sideband region corresponding to the
generated inclined peaks after splitting, and there is no OB
at or close to the point �1/�20 = 0 (dark state) whatever
the probe input intensity is, which results from disappearance
of the linear dispersion at the line center (�1/�20 = 0) by

FIG. 8. (Color online) Observed input-output intensity relation-
ship characteristics of the system with probe detuning �1

/
�20

scanned when only the zero-order cavity mode is considered; E2 (E′
2)

is sufficiently strong while E3 and E′
3 are blocked. (a) FWM

transmission output changes with both probe detuning �1/�20 and
probe input intensity Ii/�2

20 when G2 is sufficiently strong; (b) FWM
transmission output with probe detuning at Ii/�2

20 = 10, 50, 680
from inside to outside; (c) FWM transmission output intensity with
probe input intensity when G2/�20 = 1 (dashed), G2/�20 = 2 (dot-
ted), and G2/�20 = 3 (solid); (d) FWM transmission output intensity
with probe input intensity at �1/�20 = 4.8 (dashed), �1/�20 = 4.9
(dotted), and �1/�20 = 5 (solid); (e) the OB threshold of the OPA
FWM process versus �1/�20 for G2/�20 = 2 at �2/�20 = −10
with the dots of the upper branch standing for the right OB threshold
and the dots of the lower branch standing for the left one.

the interference between two possible absorption channels
|0〉 → |±〉 induced by g2N . This interesting result enables us
to make the following study to verify the primary conclusion
that OB does not exist at or near all the positions of dark states
induced by the dressing fields.

Analogically, we analyze the similar dependence of OB
behavior when the power of E2 is sufficiently strong to
reveal its dressing effect, as shown in Fig. 8. The basic OB
characteristic is in accordance with the previous analysis. As
a consequence of the dressing effect of E2, the absorption
and dispersion coefficient of the medium can be modified
dramatically, which results in the AT splitting based on the
VRS and the three different frequency (�1) regions of the
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(a) (b) (c)

FIG. 9. (Color online) FWM transmission output intensity versus probe input intensity when E2 (E′
2) is sufficiently strong with E3 and E′

3

blocked. The dashed, dotted, and solid curves correspond to (a) N decreases as N/�20 = 100,10,1; (b) the Rabi frequency of dressing field
increases as G2/�20 = 0,2,4; (c) different detuning combinations �1 + �2 = 0,0.5, − 0.5 are adopted when G2/�20 = 2.

OB, shown as Figs. 8(a) and 8(b). Figure 8(c) illustrates
the fierce decreasing of the two OB threshold values of the
OPA FWM process when increasing the Rabi frequency of
E2 as G2/�20 = 1,2,3, especially the right one. Figure 8(d)
displays the decreasing OB threshold values with decreasing
|�1|, the same as in Fig. 7(c). Also, there is no OB at the
position of the dark state (�1/�20 = 0 and �1 + �2 = 0),
due to the lack of linear dispersion induced by g2N and the
suppression effect induced by E2, as predicted by Fig. 8(e). The
phenomena in this part demonstrate the changeable properties
of OB behavior influenced by the dark state induced by the
dressing effect, and we believe this will provide a kind of
experimental control of VRS and OB simultaneously.

B. OB of high-order modes

On the other hand, we consider the OB of high-order modes
theoretically based on the traditional cavity transmission coef-
ficient as contrast and also take the transmitted FWM signal,
for example. The total susceptibility can be expressed as χ =
χ (1) + χ (3) |Ei |2 = Nμ2

10(ρ̃(1)
10 + ρ̃

(3)
10 )/[ε0h̄GF ], in which χ (1)

and χ (3) are the linear susceptibility and the third-order
nonlinear susceptibility, respectively. Here, we can ob-
tain ρ̃

(1)
10 and ρ̃

(3)
10 by solving the coupled density-matrix

equations as

ρ̃
(1)
10 = iGF

d1 + |G2|2
d2

+ |G3|2
d3

, (8)

ρ̃
(3)
10 = −iGF |GF |2[

d1 + |G2|2
d2

+ |G3|2
d3

]3
+ −iGF |G1|2[

d1 + |G2|2
d2

+ |G3|2
d3

]3

+ −iGF |G2|2[
d1 + |G2|2

d2
+ |G3|2

d3

]2
d2

+ −iGF |G3|2[
d1 + |G2|2

d2
+ |G3|2

d3

]2
d3

.

(9)

In Eq. (9), the first term in ρ̃
(3)
10 indicates the self-Kerr

effect while the last three terms indicate the cross-Kerr
effect in medium. Consider that |GF |2 is proportional to
the intensity of the transmitted cavity FWM field when the
feedback effect is considered. So the susceptibility can be

revised as

χ = 2g2NLc

Laω1

⎧⎨
⎩

i

d1 + |G2|2
d2

+ |G3|2
d3

+ −iIo[
d1 + |G2|2

d2
+ |G3|2

d3

]3

+ −i |G1|2[
d1 + |G2|2

d2
+ |G3|2

d3

]3
+ −i |G2|2[

d1 + |G2|2
d2

+ |G3|2
d3

]2
d2

+ −i |G3|2[
d1 + |G2|2

d2
+ |G3|2

d3

]2
d3

⎫⎬
⎭ . (10)

Then based on Eq. (2), the OB can be investigated.
By setting the relevant parameters at appropriate values,

we can increase g
√

N to be near or larger than �FSR so as
to observe the OB of high-order modes, and the OB still only
appears at the position where absorption and dispersion are
appropriate under the influence of splitting. Now we succeed
in controlling their OB thresholds of the OPA FWM process
and curve shape by adjusting several related parameters. When
there is one dressing field and only the self-Kerr nonlinearity
effect is considered, the corresponding results are shown in
Fig. 9. When N decreases as in Fig. 9(a), the left OB threshold
increases slowly while the right one increases sharply, leading
to a dramatic expansion of the bistable region. Similarly, if we
increase the intensity of the dressing field as in Fig. 9(b), both
the two OB thresholds decrease and the size of the bistable
region just nearly stays the same. Finally, we discuss the OB
at �1 + �2 = 0,0.5, − 0.5 as shown in Fig. 9(c). As what
we have assumed according to the analysis previously, there
is no OB effect at the dark-state position and the OB will
gradually appear when the frequency detuning deviates from
�1 + �2 = 0 step by step. All the results reveal that the origin
of the OB is related with the splitting of the cavity modes to
some extent, and we can apply this kind of control of the OB
threshold of the OPA FWM process to the development of an
OB switch.

VII. CONCLUSION

In conclusion, we have investigated the control of the
dark state on the multidressed VRS and OB behavior of a
zero- and high-order transmitted cavity MWM signal in the
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coupled system consisting of a specific ring cavity and reverse
Y-type four-level atoms assembly. The numerical calculations
are based on the master equation formalism and the traditional
cavity transmission coefficient. We have demonstrated the
coexistence and cascade competition between VRS and OB
behavior, where the VRS results from the atom-cavity collec-
tive effect induced by high atom density while the OB behavior
results from the sufficiently strong feedback effect. Due to the
complicated generation and operation process of the MWM
signal, the inclined VRS is obtained under the interaction
with OB, and such OB behavior cannot appear at or near
the position of the dark state induced by the dressing effect.
We also demonstrate the suppression and enhancement of the
multidressed MWM signal by scanning the frequency detuning
of the dressing field, and the linear gains and thresholds for the
paired bright correlated light beams in the OPO process with an
OB threshold of the OPA MWM process. Such control of dark
and bright states on the VRS and OB, etc., can be achieved
by adjusting the cavity field and other coupling fields, and
will be useful in potential applications for optical devices and
quantum information projects.
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APPENDIX A: CALCULATION OF TRANSMITTED
CAVITY MODE

In this Appendix, we give more detail of the calculation of
transmitted cavity mode induced by FWM (SWM) and doubly
dressed by E2 (or E′

2) and E3, shown as Eq. (1) in the text.
Under the weak-cavity field limitation and with all the

atoms initially in the ground state |0〉, the evolution of the
cavity field and the density matrix operators obey the following
linear equations, which can be easily derived using the master
equation in the atom-cavity interaction picture:

ȧ = − [i (�1 − �ac) + γ ] a + ig
√

Nρ10, (A1)

ρ̇10 = −[i�1 + �10]ρ10 + iGF (S)ρ00 + ig
√

Naρ00

+ iG∗
2ρ20 + iG3ρ30, (A2)

ρ̇20 = −[i(�1 + �2) + �20]ρ20 + iG2ρ10, (A3)

ρ̇30 = −[i(�1 − �3) + �30]ρ30 + iG∗
3ρ10. (A4)

Here the overdots represent the derivative with respect
to time t , γ is the decay rate for the cavity, ρij is the
density matrix element, �ac = ω10 − ωc is the detuning of
the cavity field with cavity frequency ωc, and GF (S) is the
Rabi frequency of the generated FWM (SWM) field with
GF ∝ √

2/ε0ch̄Nμ2ρ
(3)
F2, GS ∝ √

2/ε0ch̄Nμ2ρ
(5)
S3 . Due to the

results of the above equations and equilibrium state of the
system, we can acquire the transmitted cavity mode induced
by FWM (SWM) and doubly dressed by E2 (or E′

2) and E3.

APPENDIX B: CALCULATION OF STEADY-STATE LINEAR GAIN

The steady-state linear gains that are only alluded to in the text are given more detailed calculations in this Appendix.
In the �-type subsystem mentioned in the text in which E1 resonates with transition |0〉 → |1〉, E3 resonates with |3〉 → |1〉,

and cavity field a is coupled with the two transitions, the evolution of density matrix elements are

ρ̇10 = −�10ρ10 + i(G1 + g
√

Na)(1 − ρ33 − 2ρ11) + i(G3 + g
√

Na)ρ30, (B1a)

ρ̇30 = −�30ρ30 + i(G3 + g
√

Na)ρ10 − i(G1 + g
√

Na)ρ31, (B1b)

ρ̇13 = −�13ρ13 + i(G3 + g
√

Na)(ρ33 − ρ11) + i(G1 + g
√

Na)ρ30, (B1c)

ρ̇11 = −(γ10 + γ13)ρ11 − 2i(G1 + g
√

Na)ρ10 − 2i(G3 + g
√

Na)ρ13, (B1d)

ρ̇33 = −γ30ρ33 + γ03(1 − ρ11 − ρ33) + γ13ρ11 + 2i(G3 + g
√

Na)ρ13, (B1e)

where γij represents the spontaneous decay rate from |i〉 to |j 〉 (γ10 and γ13), or the decay rate from |i〉 to |j 〉 (γ30 and γ03) caused
by the collision. In Eq. (B1), we assume ρ00 + ρ11 + ρ33 = 1, ρ10 = −ρ01, ρ13 = −ρ31, and ρ30 = ρ03, which are all caused by
the resonance condition. From the calculation above we can easily obtain the linear gain shown as Eqs. (4) in the text.

Similarly, in the �-type subsystem |0〉 → |1〉 → |2〉 mentioned in the text in which E1 resonates with |0〉 → |1〉, E2 resonates
with |2〉 → |1〉, and cavity field a couples with the two transitions, the evolution of the density matrix elements can be given as

ρ̇10 = −�10ρ10 + i(G1 + g
√

Na)(ρ00 − ρ11) + i(G2 + g
√

Na)ρ20, (B2a)

ρ̇20 = −�20ρ20 + i(G2 + g
√

Na)ρ10 − i(G1 + g
√

Na)ρ21, (B2b)

ρ̇21 = −�21ρ21 + i(G2 + g
√

Na)(2ρ11 + ρ00 − 1) − i(G1 + g
√

Na)ρ20, (B2c)

ρ̇11 = −γ10ρ11 + γ21(1 − ρ00 − ρ11) − 2i(G1 + g
√

Na)ρ10 + 2i(G2 + g
√

Na)ρ21, (B2d)

ρ̇00 = −γ03ρ00 + γ10ρ11 + 2i(G1 + g
√

Na)ρ10. (B2e)

Then with an approximation of the neglected crossed influence of the cavity field, we get the steady-state linear gain shown as
Eqs. (5) in the text.
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