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The 2 X 2 matrix methods are extended to calculate the optical behaviors of reflective liquid-crystal displays
with asymmetric incident and exit angles. Both the unfolding method and the backward-eigenwave method are
employed to derive the 2 X2 matrix representations. The simulation results for symmetric incident and exit
angles from these two methods are identical and agree well with those obtained from the 4 X 4 matrix method
when the air—panel surface reflections are neglected. Further, the derived 2 X 2 matrix methods are applied to
the asymmetric cases with different incident and exit angles. The simulated results on the normally black ver-
tical alignment and normally white mixed-mode twisted nematic reflective displays show reasonably good
agreement with the reported experimental data. In addition, a rubbing effect related to contrast values is ob-
served and analyzed in asymmetric reflective cases. We also find that this effect has a significant influence on
the contrast ratios once the difference between the incident and exit angles becomes large. © 2005 Optical

Society of America
OCIS codes: 230.3720, 230.2090.

1. INTRODUCTION

Reflective liquid-crystal displays (LCDs) exhibit some
unique advantages over transmissive ones in low power
consumption, sunlight readability, and large aperture ra-
tio, which lead to filmlike image quality.1 They have been
widely used in both direct-view and projection displays,
such as personal digital assistants, cellular phones, and
liquid-crystal-on-silicon-based projectors. With a reflec-
tive direct-view LCD, which uses ambient light to read
out the displayed images, surface reflection becomes a
critical issue. To minimize surface specular reflection for
the purpose of enhancing contrast ratio, the ambient light
is incident to the panel at an angle of approximately —30°,
and the displayed image is reflected by the embedded
bumpy reflector to the observer at ~10° off the normal di-
rection, as shown in Fig. 1. That is, in a direct-view reflec-
tive LCD the incident and exit angles are not symmetric.
Owing to the asymmetry of the input and output angles,
the incident and reflected beams experience different LC
director orientations. Most previous analyses that deal
with reflective LCDs assume normal incidence. This as-
sumption is valid only for projection displays but is in-
valid for direct-view reflective LCDs. Therefore a realistic
analysis for reflective LCDs should consider this asym-
metric feature.

In this paper we introduce two methods, the unfold-
ing method and the backward-eigenwave method, for use
in deriving the 2 X 2 matrix representations for reflective
LCDs with asymmetric incident and exit beams. In these
methods, in order to account for the slant reflector, we de-
rive a transformation matrix to correlate the exit and in-
cident electric fields on the transition slant surface of the
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reflector. Further, a reflectance defined on the basis of the
energy-flow diagram is introduced to deal with the asym-
metry on the panel surface. Finally, we apply our analyses
to investigate two practical LC operation
modes: normally black vertical alignment (VA)? and nor-
mally white mixed-mode twisted nematic (MTN)? cells. In
simulations of reflective LCDs, the 4X4 matrix
method* 2 is a commonly employed approach for calcu-
lating the optical performance under the conditions of
symmetric incident and exit angles. However, to our best
knowledge, no systematic studies of 4 X4 matrix method
formulations under asymmetric incident and exit angles
have ever been reported. Therefore to verify the accuracy
of the 2X2 methods here, we compare them with the
well-known 4 X 4 matrix method only under conditions in
which the incident angle and the exit angle are equal.
These results agree well once the surface reflection is
eliminated by surface air coatings. However, in most prac-
tical direct-view reflective LCDs, the exit angle is inten-
tionally deviated from the incident angle in order to avoid
specular reflections. Thus our 2 X 2 methods here provide
a unique capability for simulating the realistic reflective
LCD.

2. THEORETICAL ANALYSES

We consider that an unpolarized light enters an LC panel
at an oblique angle and is reflected back to the air as
shown in Fig. 2. Without loss of generality, we choose a
coordinate system in which the wave vector £ lies in the
x—2z plane. Here the +z axis points from the bottom glass
substrate to the exit polarizer. The whole LCD system is

© 2005 Optical Society of America
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Fig. 1. Schematic diagram of beam path and viewing position in
a conventional hand-held reflective LCD device.
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Fig. 2. Schematic diagram of layer division in a direct-view re-
flective LCD system. The wave-propagation vector % lies on the
x—z plane, 6, is the incident angle from the air to the LCD, and
Oexit 18 the exit angle from the LCD to the air.

divided into N layers in the z direction. The retardation
film shown in the figure can comprise more than one layer
as needed. In simulations, each film is treated as a single
homogenous layer. And in some reflective LCD devices,
special antireflection (AR) coatings are deposited outside
the polarizer. Under such a condition, Layer 1 should be
the AR coatings instead of the polarizer.

A. Unfolding Method

Because of the different incident and exit angles, the in-
put and outgoing beams encounter different LC director
orientations during propagation. To facilitate the simula-
tion in the same coordinate system, we can transform the
reflective LC cell into an equivalent double-cell transmis-
sive structure by putting the mirror-image13 stacks of re-
flective LCD system below the original ones as shown in
Fig. 3. We call this method the unfolding method. Such an
unfolding treatment still keeps the same reflected wave-
vector value k. as before. However, the incident wave
vector ki, is replaced by its image in the equivalent
transmissive LCD system as shown in Fig. 3.

In order for the optical simulation in each layer to be
carried out, the distribution of the optical axis in each
layer needs to be well defined. Owing to the unfolding
conversion, the LC director distribution in the image
stacks needs to be adjusted accordingly. Figure 4 shows
the relationship between the equivalent mirror-image di-
rector and the original one. Here 77 is the original LC di-
rector at an azimuthal angle ¢ and a tilt angle 6, and 7
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represents the corresponding mirror image. Since a direc-
tor denotes the preferred orientation direction of only the
local-domain LC molecules, 7 and -n are equivalent to
each other.' Therefore we can translate 7, to the equiva-
lent director 773 above the x—y plane, which is just the op-
posite extent of 729, as shown in Fig. 4. Clearly, one can
find that the tilt angle 6’ of n5 is equal to that of 7; (i.e.,
0' = 0), while its azimuthal angle ¢’ is deviated by = from
that of 7y; i.e., ¢' ==

From this conversion, the bottom image stacks also
have their directors defined in the x—y plane as the origi-
nal ones. Besides, several matrices are needed here in or-
der to correlate the electric-field components incident on
the panel surface with the outgoing ones after modula-
tion.

1. Transformation Matrices in the Top and Bottom
Stacks

With the above-mentioned LC director distribution, we
can derive the 2 X 2 extended Jones matrices for the lower
mirror-image layers and the original LC stacks sepa-
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Fig. 3. Schematic diagram of layer division in an equivalent
double-cell transmissive LCD structure by unfolding method. In
this equivalent structure, light enters from the bottom air into
the bottom polarizer layer and exits from the top polarizer layer
to the top air.

Fig. 4. Relationship between the image director and the origi-
nal director in the same coordinate system. 74, 1y, and 5 de-
note the original director, the mirror-image director, and the
equivalent mirror-image director, respectively.
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rately. Many efforts have been made to generalize the
2 X 2 matrix formulations for birefringent media at ob-
lique incidence.!>2* Using the light-refraction principle,
Yeh first discussed the case of a single birefringent plate
by considering the boundary-matching conditions be-
tween isotropic and birefringent media.’® Gu and Yeh
later extended this method to multilayered systems, in-
cluding LCDs. They assumed fictitious zero-thickness iso-
tropic media between the birefringent plates.16 On the
other hand, Lien proposed another form of the extended
Jones matrix, in which he accounted for the effects of
Fresnel refraction at interfaces by matching only the
electric-field boundary conditions.!” Later, Lien and Chen
introduced a modified 2 X2 matrix form, in which both
the magnetic- and the electric-field boundary conditions
are taken into consideration.’® These 2 X 2 matrix meth-
ods agree well with the 4 X4 matrix method for conven-
tional twisted nematic transmissive cells.'® Detailed com-
parisons among various 2X2 matrix methods can be
found in Ref. 20.

In our derivation of the 2 X 2 matrix formulations of the
case of asymmetric incidence and exit, we will follow the
derivations of Lien’s approach,’” which has reasonably
good accuracy. The overall extended Jones matrix repre-
sentations of the upper original stacks (Jyppey) and lower
mirror-image stacks (J},wer) can be expressed as

Jupper =diJy ... Indn, (1)

JloweerZ,\]J],\/_l...JéJi. (2)

where J; is the extended Jones matrix for the upper ith
layer and oJ] corresponds to the ith mirror-image layer.
Detailed derivations for oJ; and J; formulations are de-
scribed in Appendix A.

A special note regarding this unfolding treatment is
that &, should be adjusted to & sin O, with 2g=27/\ in
calculating the element matrix J; of the exit part Jper,
and to k¢ sin 6;,. for the J] of the incident part /1gye,. Here
0inc is the incident angle from air to the display panel and
O.xit represents the exit angle from the panel. In addition,
the director tilt and azimuthal angles of the image stacks
should be replaced by 6’ and ¢’ as derived above, respec-
tively.

Matrix o ,wer in Eq. (2) acts as a transformation matrix
that correlates the incident electric fields on the reflector—
LC layer interface [E}, y,,E, y,,]" with those on the air—

A 5,
panel interface [E, ;,E ;]”. Such a relationship can be ex-
pressed as

i i
x,N+1 x,1
|: i :| =Jlower[ i ‘| (3)
E
v,N+1 y,1
Similarly, Jypper correlates the reflected electric fields on

the air-panel interface [E;,pE;,ﬂT with those of the
reflector—L.C layer interface [E}, v, ,E) y,,]" as

r Er
)1 N+1

lEj ]zJ“p"e’l . 1 @
y,1 y,N+1
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tangential surf;ce of bumpy reflector

Fig. 5. Schematic diagram of the beam path in the LC cell and
the field reflection on the surface of the reflector; the dashed line
represents the tangential reflection surface on the bumpy
reflector.

2. Transition Matrix on the Reflector Interference

In practical direct-view reflective LCDs, a slant bumpy re-
flector is intentionally designed to make the light exit
angle different from the incident angle so that the images
are deviated from the specular surface reflections. Owing
to this special design, on the bumpy reflector surface the x
and y components of the reflected electric field
[E} i1 By 3iq]” are generally not equal to the corre-
sponding incident fields [E y,,,E, y,,]”. However, they
can be correlated by a transition matrix. Figure 5 depicts
the field reflection diagram.

Figure 5 plots the electric-field orientations on the
bumpy reflector surface. Here the light is incident at an
angle 6; from the z axis and reflected at 6,. The tangential
reflection surface on the reflector, shown as the dashed
lines in Fig. 5, can always be uniquely defined. From Fig.
5 we can derive the following equations correlating the in-
cident tangential-field components (x and y components)
and their corresponding incident parallel () or perpen-
dicular (L) ones as

Efc,N+1 =- Eli\,N+1 cos 6;, (5)

E;,N+1 == EiL,N+1' (6)

Here Eﬁ,N .1 and E‘L ~+1 are the parallel and perpendicular
electric-field components impinging on the reflector sur-
face, and their x and y components are E, y,; and
E) n.1- 0; is the incident angle with respect to the +z

y
axis and can be easily obtained by Snell’s law as

6, = sin™Y(sin 6,,/n10). (7)

Here nic stands for the average LC refractive index.
From Fig. 5, similar relationships for the reflected electric
fields can be expressed as

E;,N+l = Eﬁ]\/}_l COS ﬂr, (8)
B\ N1 =B’y 9)
6, = sin~!(sin Ooxit/N1.0) - (10)

In a reflective LCD, aluminum is commonly used as the
bumpy reflector. The metallic reflector can be assumed to
be a perfect conductor; thus the reflected electric and in-
cident fields have equal parallel and perpendicular ampli-
tudes. This relation leads to
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cos 6, .
. N+1 - 0 ;c N+1
" =| cos 6 i’ . (11)
Ey,N+l 0 _1 Ey,N+1
The minus signs in Eq. (11) denote one 7 phase change by
the metallic reflector. Therefore the transition matrix Jtg

can be written as

cos 0,

Jrr=| co0s6; . (12)
0 -1

This matrix Jpg accounts for the slant shape of the re-
flector. With matrices Jrg, Jiower, 80d Jypper, the x and y
components of the electric fields between the exit and the
incident waves just beneath the surface of LCD panel can
be correlated as

E ;,1 E i,l
E" = JupperJ TRJlower i ) (13)
¥,1 ¥,1
where
Juppel‘]TRJlower = J1J2 ce JN—lJNJTRJI/VJ],V—l s JéJi .
(14)

3. Interface Matrices Induced from Index Mismatch
Considering the loss at the air—panel interface due to the
refractive index mismatch, two additional interface ma-
trices need to be introduced.!”?! In the entrance side, the
interface matrix is

2 cos 6

- - 0
cos 61 + nq cos Oy,

Jent = , (15

ent o 2 cos 0inc ( )

oS by, + nq cos 6]

where 6] is the light incident angle in the first layer under
the panel surface and can be obtained by Snell’s law as
0;=sin"!(sin 6;,./n;), while n, stands for the average
value of the real parts of n, and n, of the first layer under
the surface, such as the first layer of the AR coatings or
the polarizer. On the exit side, the interface matrix be-
comes

2n1 €0S Oyt

0
€0S 61 + 11 COS Oyt

Jext = 16
ext 0 2n1 cos 01 ’ ( )

COS Bxit + 11 COS 61

and similarly 6;=sin"}(sin O/n1).
Therefore the overall 2 X2 matrix representation for
the whole system can be written as follows:

J=dexid 1z InaInTRI NI N - ST 1 ens (17)

With this 2 X 2 matrix ¢/, the exit tangential electric fields
becomes
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Bzl (B
[ exi } =J { in } (18)
Ey,air Ey,air

where [E;’}gir,E;I};ir]T and [Eif‘;fr,E;ﬁitr]T denote the inci-
dent and the exit tangential electric fields, respectively, in

air.

4. Reflectance Correction Coefficient Based on
Energy-Flow diagram

In common reflective LCD systems, the incident light is
usually from a diffusive light source, such as ceiling light
or sunlight, rather than from a point source. However, in
a real display panel characterization, the LCD panel is
usually illuminated by a highly collimated light. Thus the
incident and exit lights can be assumed to uniformly en-
ter or exit the LCD panel. In other words, the incident
light is not focused and can be assumed to impinge on the
panel surface in parallel. Therefore the power of the inci-
dent or the exit light can be expressed as the product of
the intensity and its transverse area along the propaga-
tion direction. For symmetric incidence and exit, the
transverse areas for the two lights are equal. In such a
condition, the reflectance is defined as the ratio of the re-
flected (output) power to the incident (input) power in the
following form:

x,ai y,air

Pin - |E9icl,1:1ixlcos 0inc|2 + |Einc ‘2 .

y,air

P |E9Xit,/COS Osit]® + |Eexit 2
R= —

(19)

However, for the case of asymmetric incidence and exit,
the incident and exit beams have different transverse ar-
eas along the propagation direction in the air. Therefore
the ratio of the areas should be taken into consideration.
Figure 6 shows a plot of the beam path for the incident
and exit waves. The incident beam has a transverse
length AD, and that of the exit beam is KL. Therefore,
since the covered ranges for the two lights in the y direc-
tion are equal, the input power and the exit power in
these cases can be defined as

Py = (EY5/cos Oind® + |E)G, [DAD, (20)

y,air
and the output power to air is

Py = (IESS/c0S Oogiel? + |ESSH DKL (21)

x,ai y,air

The ratio of KL to AD can be obtained from the geomet-
ric relations as shown in Fig. 6. The values of the refrac-
tive indices of the LCD layers (e.g., polarizer, glass, and
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Fig. 6. Schematic diagram of energy-flow-defined reflectance
with asymmetric incident and exit angles in R-mode LCD.
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LC) are usually rather close; therefore the incident and
exit beams experience negligible change in propagation
direction in the LC panel. From the theory of geometry,
triangles EFG and EFH are equivalent to each other.
This results in EG=HF, which further leads to BC=IJ.
Since BC=AC cos 6; and IJ=IK cos 6;, AC and IK will
have the following relation:

AC cos 67 =IK cos 0. (22)

Moreover, since AD=AC cos 6;,, and KL=IK cos 0, the
ratio of KL to AD becomes

KL 1TKcos Ouy;  €OS 0] COS Gpyiy
Teors = AD  AC cos 6, cos 6 cos b,

(23)

We define this ratio as 7., which is a correction coeffi-
cient of the reflectance for the asymmetric cases. It is easy
to prove that 7., is equal to 1 if the incident and exit
angles are equal. Here if the average index difference be-
tween different layers is large, the shift of the beam path
needs to be considered into the form of 7.y,

From Eqgs. (20)—(23) the reflectance has the following
expression:

Pout |EeXitI/COS 0exit|2 + |Eexit ‘2 cos 01 cos 0exit

x,ai y,air

Py |E™S,Jcos Oinel? + |EPS, |2 cos 6;  cos Oy

x,al y,air

(24)

If we consider an unpolarized light with equal TE and TM
components, we can assume

Ge et al.
Eaicr,l;ir Cos einc
Einc = ei<p ’ (25)
y,air

where ¢ denotes the phase difference between the TE and
the TM components.
Equations (20) and (25) will result in

Pin=(

The x and y components of exit electric fields can be ob-
tained from Eq. (18) as

[E} _[Jn Jm] [E] o
Ey] |z Jaa || Eye ]

Expanding this equation, along with Eq. (25), leads to

inc 2
x,air

x,air

+|Ee |2>AD =2AD. (26)
cos by

Efjngr =11 €OS Gine + J 19077, (28)
E;X;;fr = Jg1 €OS Gine + Joge’®. (29)

Therefore the output power can be expressed as

Pout=<

We can expand the P, and it will have the following
form:

exit 2

x,air

x,air

+ Bt |2>KL. (30)
cos Oexit

Oineel 1967

£ _: *
( T 112 cos? i, + | 192 + T 11 cOS Biped 1067 + J 11 COS
out =

c0s? Oy

+dJy, cos 9incJ22ef<°> KL.

If we take the average value of P, with respect to the
phase ¢, the average output power can be given as

out =

|7 11]% cos? Bine + [ 1]
av ( 5 e + |J21|2 (30S2 Ginc + |J22|2 KL
€OS” Boyit

(32)

From Egs. (26) and (32), the overall reflectance of an un-
polarized light is given as

B |Ju|2 cos? Oine + |le|2 + cos” Hexit(|J21|2 cos® Oine + |J22|2)

2
2 c0S* Opyit

COS 0] COS Gy

X (33)

cos 60 cos ;.

B. Backward-Eigenwave Method
In this section, another method to calculate the system
2 X 2 matrix for reflective LCDs with asymmetric incident

+[f91[% €082 Gin + [T 9] + 31 €OS GineeT pe ¢

(31)

and exit angles is introduced. This method takes advan-
tage of the eigenwaves’ properties in a LC cell.

In an LC cell, if a forward wave propagates from bot-
tom to top as shown by the bold arrows in Fig. 7, a back-
ward wave (the dashed arrow lines) that stands for the re-
flected one will be excited simultaneously, and these two
waves will have the same angles 6 with respect to the nor-
mal direction. With the symmetry relationship from re-
versal invariance of Maxwell’s laws'? in the LCD system,
we can obtain simultaneously the 2 X2 element matrices
to correlate the field components of both forward and
backward waves between two subsequent homogeneous
layers. In a reflective LCD with asymmetric incident and
exit angles, the incident wave can be viewed as the corre-
sponding backward part of a forward wave with an angle
of 6,,., and the reflected wave can be taken as the forward
wave with an angle of 6., as illustrated in Fig. 7. With
this treatment, we can solve the wave-propagating prob-
lem in a LC system with an angle of 6,,. to obtain the
backward matrix. This matrix can further correlate the
field components in the incident beam between two layers
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backward N N

forward

Fig. 7. The top figure shows schematically the forward propa-
gation (bold arrow) and backward propagation (dashed arrow)
through a layer. The bottom figure shows that the incident wave
from top to bottom can be viewed as the backward part (dashed
arrow) with an angle of 6;,.

in the asymmetric light incidence and exit. Similarly, we
can solve that wave-propagating system but with an
angle of 6.4 to obtain the forward matrix, which can cor-
relate the field components between two layers in the re-
flected beam in the above-mentioned asymmetric case.
Therefore the two matrices can be derived in the same xyz
coordinate. It does not require any special transformation
of director distribution, unlike the image treatment in the
unfolding method. We call this method the backward-
eigenwave method.

Here, to obtain the formulations of the backward and
forward 2 X 2 matrices, we need to solve the eigenwaves of
the 4 X 4 coupling matrix as in the derivations of the con-
ventional 4 X4 matrix method. The 4 X4 matrix method
by solving eigenwaves was originally proposed by Eidner
et al.’ Stallinga12 later further extended this scheme in
deriving the 4 X4 matrix method to reflective LCDs. In
Ref. 12, the computing speed is improved by a factor of 2
by use of the symmetry relation from the reversal invari-
ance of Maxwell’s laws. Here the faster speed by a factor
of 2 could also be obtained by using the analytic approach
with the Lagrange—Sylvester extrapolation
polynomial.®*" In Appendix B we provide a systematic
derivation of the 4 X4 matrix and its eigenwaves, which
further generates the formulations of the 2X2 element
matrices for the backward-eigenwave method discussed
later in this paper.

Returning to the reflective LCD structure as in Fig. 2,
the incident tangential fields on the interface of the
reflector-LC layer [E;,,N+1’E;,N+1]T and the fields on the
air-panel interface [E |,E; ;]" can be correlated once we
define the overall transforming matrix in the inside
stacks for the incident wave as J}'. Their relation can be

shown as
lEf,N+1‘| =Jrénc|:Ezc,1:|, (34)
y,N+1 y,1

= (T o) )T T )T (35)

with

where k,=k sin 6;,.. Similarly, we can define the overall
transforming matrix in the inside stacks for the reflected
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wave as J,, which correlates the reflected electric fields on
the air—panel interface [E;,I’E;,l]T with those on the in-
terface of the reflector-LC layer [E}, y,,,E} y,,]" as

rl r,N 1
y,1 y,N+1

Jo=do1doo - onadons (37)

with

where k,=k( sin O The detailed formulations for ele-
ment matrices J,; of J;* and J; ; of J; are provided in Ap-
pendix B.

With the transition matrix Jrg in Eq. (12) and surface
compensation matrices J; and J.y, we can express the
overall 2 X2 matrix formulation for electric fields for the
reflective LCDs as

Jo=Jex gJTRJincJent~ (38)

By inserting matrix J, into Eq. (33), we can obtain the
overall reflectance.

3. NUMERICAL EXAMPLES

To illustrate these 2 X 2 matrix methods, we give some nu-
merical examples for the two commonly employed reflec-
tive LC modes: normally black VA and normally white
MTN cells.

For the VA mode, we chose MLC-6608 (from Merck) as
the LC material. Its parameters are n,=1.5578, n,
=1.4748, ¢=3.6, €, =7.8, K11=16.7 pN, K9,=7.0 pN, and
K33=18.1 pN. For the MTN mode simulations, we chose
Z11-4792 (from Merck). The material parameters are n,
=1.5763, n,=1.4794, =8.3, €,=3.1, K;;=13.2 pN, Ky,
=6.5 pN, and K33=18.3 pN.

A single polarizer with a broadband quarter-wave film
is used to work as cross-polarizer structure for the direct-
view reflective display. The complex polarizer refractive
indices are assumed to have n,=1.5+;0.00220820 and n,
=1.5+70.00003222 with j=V-1, and the thickness of the
polarizer is 190 um. For the broadband quarter-wave
film, we use the structure shown in Fig. 8, which is com-
posed of a chromatic quarter-wave film and a chromatic
half-wave film.?® The n, of the quarter-wave film is 1.5110
and the n, is 1.5095, with a film thickness of 91.6667 um

Polarizer T axis

broadband
M4 film

M4 film

Fig. 8. Structure of a broadband quarter-wave film, which com-
prises one chromatic quarter-wave film and one chromatic half-
wave film. The quarter-wave film has an optic axis with an angle
of 75° to the transmission axis of the polarizer. The half-wave
film has an angle of 15° to the transmission axis of the polarizer.
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Fig. 9. Electro-optical properties of symmetric incidence for (a) normal incidence case with different methods for a VA mode, (b) 6;,.=
-30° and 6,,;;=30° with different methods for a VA mode, (c) normal-incidence case with different methods for an 80° MTN mode, (d)
0ine=—30° and 6,,;;=30° with different methods for an 80° MTN mode.

(at A=550 nm). The half-wave film has n,=1.5123 and
n,=1.5089 with a film thickness of 80.8824 um (at A
=550 nm).

For the case of symmetric incidence (including normal
incidence), we employ the 2 X 2 unfolding method and the
2 X 2 backward-eigenwave method and compare results
with those of the well-established 4 X4 matrix method.
The 4 X 4 matrix method takes in the specular panel sur-
face reflections, which the 2 X2 matrix methods will not
include. Therefore in this part of the simulation, the AR
coating is introduced on the surface of the polarizer to
eliminate the effect of symmetric specular surface reflec-
tions. Once validated, the 2 X2 matrix methods are ex-
tended to the asymmetric incident- and exit-angle case, in
which, to our knowledge, no systematic 4X4 matrix
method formulations have ever been studied. In these
cases, the surface reflection is greatly eliminated by the
offset reflectance mechanism.?® Therefore the AR coating
is removed from our simulation. In all, our methods pre-
sented here enable us to optimize realistic reflective
LCDs.

A. Symmetric Incidence Case

The VA mode has been widely used in reflective LCDs ow-
ing to its high contrast ratio. The LC cell gap in our simu-
lation is 2.2 um with a pretilt angle of 88°. Figures 9(a)
and 9(b) show the simulated voltage-dependent reflec-
tance curves from the unfolding backward-eigenwave and
the 4 X 4 matrix methods for the normal incidence and the
symmetric oblique incidence (6;,,=—30° and 6.;;=30°)
cases, respectively. From these figures, the three methods
agree very well. The results of the unfolding and the

backward-eigenwave methods are identical to each other.
A negligible discrepancy between the 2X2 and the 4 X4
matrix methods is found, which stems from the weak in-
ternal multiple reflections between different layers. Here
the surface reflections have already been greatly elimi-
nated by the panel’s AR coating.

The MTN cell is also commonly used in reflective LCDs
because of its large cell-gap tolerance and simple fabrica-
tion process. Figures 9(c) and 9(d) show the VR curves of
a normally white 80° MTN mode from these three meth-
ods for normal incidence and symmetric oblique incidence
(6ine=—30° and 6,4;,=30°) cases, respectively. In the simu-
lations, the LC cell gap is controlled at d=2.81 um and
the pretilt angle is 2°. Similarly, excellent agreement be-
tween these methods are observed from these figures
when the surface reflection is eliminated by the panel’s
AR coating.

B. Asymmetric-Incidence Case

In the case of asymmetric incidence and exit, we will ap-
ply the derived 2 X2 matrix methods to calculate the op-
tical performance of a real reflective LCD with slant mi-
croreflector. Among all the performance parameters,
contrast ratio is the most critical figure of merit in direct-
view reflective displays, as it is directly affected by the
quality of the dark state. In direct-view reflective LCDs,
two main factors determine the contrast ratios: surface
reflection and light leakage in the dark state. Regarding
the surface-reflection, in order to avoid overlapping the
exit lights with specular reflections the ambient light usu-
ally illuminates the LCD panel at —30° and the modu-
lated light is guided out of the panel to the viewer in a
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cone from 0° to +20° with respect to the normal direction
of the panel.z6 This type of distribution cone of light is
caused by the nonideal surface roughness.26 This treat-
ment in practical reflective LCDs will greatly reduce the
effect of specular surface reflection, and this reduction en-
hances the contrast ratio of the real device.

Besides the surface reflection, the light leakage from
LC cell is also critical in determining the contrast ratio.
Smaller residual phase retardation in the dark state will
lead to a higher contrast ratio. The overall phase retarda-
tion is a summation of those accumulated values from
both incident and exit beams. However, when the incident
and exit angles are different in the fixed study coordinate,
the rubbing diagram of boundary LC molecules can
greatly affect the light leakage in the dark state. Figures
10(a) and 10(b) show the two different rubbing diagrams
in a VA and a MTN cell, respectively. Theoretically, rub-
bing diagram 2 accumulates less overall phase retarda-
tion than does rubbing diagram 1. This effect will be
clearly demonstrated and further interpreted in the nu-
merical simulations.

In calculating the contrast ratio, in order to approxi-
mate the guiding function and surface roughness of the
micro-slant bumpy reflector, we simply let 6.4;; be scanned
from 0° to 20° with a step of 5° at a fixed 6;,,=-30°. Fig-
ure 11 shows four viewing-angle-dependent contrast
curves with different rubbing diagrams for both VA and
80° MTN cells. Here we take V=0.7 V., and V=5V  as
the OFF- and ON-state voltages for the VA cell. For the 80°
MTN cell, the OFF- and ON-state voltages are defined at
V=5V, and V=0.7 V.., respectively. Under rubbing

>\ L

rubbing diagram 1

rubbing diagram 2

(@

MTN cell

rubbing diagram 1 rubbing diagram 2

(®)

Fig. 10. Rubbing diagrams under asymmetric light incidence
for (a) a VA cell, (b) a MTN cell.
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o

Viewing angle (deg.)

Fig. 11. Viewing-angle-dependent contrast-ratio plot for both
VA and MTN modes under different rubbing diagrams.

diagram 1, the calculated contrast ratios for the VA cell at
Oexit=0°, 5°, 10°, 15°, and 20° are ~135:1, 140:1, 133:1,
116:1, and 93:1 at the above-mentioned OFF and ON states.
The average contrast ratio is ~123:1. In the simulations,
the internal multiple reflections by the indium-tin-oxide
(ITO) layers are ignored, and we assume that in this
small viewing cone the specular surface reflection is neg-
ligible owing to offset reflectance mechanism (no AR coat-
ing is used in the simulation). Otherwise, the simulated
contrast ratio values may be reduced. If the VA cell is ini-
tialized under rubbing diagram 2, the corresponding con-
trast values are ~228:1, 216:1, 183:1, 142:1, and 103:1
with an average value of ~174:1. Sugiura et al.?’ re-
ported a contrast value of ~80:1 for a reflective VA mode
with a slant reflector. The lower contrast ratio observed
by Sugiura might originate from the imperfect elimina-
tion of a small amount of surface slant reflection and in-
ternal multiple reflections induced by the ITO electrodes,
which degrade the contrast ratio. The rubbing-direction-
induced contrast ratio difference for the VA cell here is not
large because the nontwisted LC directors have large po-
lar angles.

However, it can be seen from Fig. 11 that the rubbing
diagram has a significant effect on the contrast ratio of an
80° MTN cell. The simulated contrast ratios at ,;;=0°,
5°,10°, 15°, and 20° are ~8:1, 9:1, 11:1, 13:1, and 15:1
with an average value of ~11:1 under rubbing diagram 1.
Once the cell is changed to the rubbing diagram 2, the
corresponding contrast values are enhanced to ~99:1,
118:1, 104:1, 71:1, and 44:1 with an average value of
~87:1. The rubbing-diagram-induced contrast ratio dif-
ference is dramatic. In a high-voltage region (dark re-
gion), the central LC molecules tilt up almost perpendicu-
larly to the substrate. But owing to the strong anchoring
energy on the top boundary, the polar angle of the L.C mol-
ecules will gradually decrease to the pretilt angle value
(2°) with twist as their positions change from the center to
the top of the cell. With this LC director profile in the
dark state, the effective n, values for the exit lights in the
two diagrams are close to each other if the exit angle is
close to the normal direction; i.e., the accumulated phase
retardation for the reflected beams is little different be-
tween rubbing diagrams 1 and 2. However, for the inci-
dent beams (approximately —30°), the accumulated phase
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retardation will have a much smaller value under rub-
bing diagram 2 than under rubbing diagram 1, since the
parallel part of incident wave views a smaller effective n,
value under rubbing diagram 2. As a result, rubbing dia-
gram 2 will produce much less overall residual phase re-
tardation, which generates a higher contrast ratio. This
phenomenon is not obvious in normal incidence. And the
larger the difference between incident and exit angles,
the more significant this effect will be in a MTN cell.

An ERSO group demonstrated a reflective LCD using
80° MTN cell and slant reflector.?® For the case with Bine
=-30° fixed and 6,,;; scanned from 0° to 20°, the experi-
mentally measured maximum contrast ratio is >30:1.
This result is somewhat lower than our simulated results.
The imperfect elimination of a small amount of surface
slant reflection and internal multiple reflections induced
by the ITO electrodes are responsible for the degraded
contrast ratio. Furthermore, in the ERSO experiments, it
is observed that when the spot light source is fixed at
0:nc=—30°, the observed residual surface reflection always
increases as the exit angle approaches from 0° to +20°.
Here, if the small amount of surface reflection is the only
dominant factor to determine the contrast ratio at small
exit angles, it would predict a continuous decrease in con-
trast values as the exit angle gets larger, since the in-
creasing surface specular reflections will degrade the con-
trast ratio dramatically. However, both the ERSO
experiments and our numerical simulations show the con-
trast values first increase to a peak at 6.4;= ~5° and then
decrease as the exit angle further increases. This phe-
nomenon demonstrates that the light leakage from an LC
cell is the dominant factor determining the contrast val-
ues, and our 2 X 2 method is capable of obtaining the right
modulation information of light from the LC cell under
the asymmetric case.

To improve the contrast ratio of the normally white
MTN display, the 90° twisted angle can be considered. In
the voltage-on state, the phase retardations of the bound-
ary layers compensate each other. As a result, the dark-
state voltage is reduced and the contrast ratio is en-
hanced. A drawback of the 90° MTN cell, in comparison
with the 80° MTN cell, is the slightly reduced
reflectance.b!3

4. CONCLUSIONS

We have derived two 2 X2 matrix representations: the
unfolding method and the backward-eigenwave method
for describing the asymmetric incident and exit angles of
a realistic direct-view reflective LCD. In those symmetric
cases, the 2 X2 matrix methods agree well with the 4 X4
matrix method, but their calculation speed is much faster
than the 4 X4 matrix method. These two 2 X2 matrix
methods are also applied to simulation of the normally
black vertical alignment and the normally white mixed-
mode twisted nematic reflective LCDs in a study of the
contrast values of the asymmetric cases. A rubbing effect
in the case of asymmetric incident and exit light is ob-
served and analyzed. The simulated results agree reason-
ably well with the reported experimental data.
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APPENDIX A: UNFOLDING METHOD

In a homogeneous-uniaxial-medium layer with tilt angle
6 and azimuthal angle ¢, we can express the dielectric
tensor as'’

g= ny Eyy Eyz ) (Al)
€2x Ezy €2
with

€px = nf + (nf - I’L?)COSZ 6 cos? &, (A2a)
€4y = € = (n2 — n2)cos? Osin ¢ cos ¢, (A2b)
€y = €5 = (nf - n?)sin 6 cos O cos ¢, (A2¢)
€, =n2+(n%-n?cos? 6sin? ¢ (A2d)
Yy~ Yo e o )
€= €y = (n2 - n?)sin 6 cos Osin ¢, (A2e)
€, = ng + (nf - nz)sin2 0, (A2f)

where n, and n, are the ordinary and the extraordinary
refractive index, respectively, of each medium layer. For
absorption materials such as a polarizer, the refractive in-
dices are complex values. With the dielectric-tensor infor-
mation, the element extended Jones matrix for each layer
can be specified.

For the ith sublayer, its element matrix oJ; is equal to*’

Ji=(SGS_1)i, (i=1,2’ "'}Ma (A3)

with

1
S = { 02], (A4)

ik, 1d; 0
G= |:9Xp(lozl z) :| , (A5)

exp(ik,od,;)
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where d; is the thickness of the corresponding ith layer
and
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k,
= ={ln2 - (k)P (A6)
0
kz2 €xz kx nyn, nf —-n v
— = ——4 &, | 1-——5— cos® Osin® ¢ | (k. ko) , (A7)
kO €2 kO €2 n,
[(kx/k0)2 — €. )€, + [(Ro/Ro) (R1/Ro) + €, €, (A8)
c1= ,
U [(kiko)? + (Rorlko)? — €, ][(Rolko)? ~ €..] — €€,
e [(kx/ko)z - 622] €xy + [(kx/ko)(kz2/k0) + Exz] €y (A9)

Here k,=k(sin 6 is the x component of the wave vector,
which is consistent in all layers, where ky=27/\ and 6 is
the incident angle in air with respect to the +z axis.

APPENDIX B: BACKWARD-EIGENWAVE
METHOD

A complete solution of Maxwell’s equation leads to the 2
X 2 matrix formulations for the forward and backward
waves. The procedures are similar to the 4 X 4 matrix for-
mulation, which can be derived by solving the eigenvalues
and eigenvectors of the matrix denoting the linear Max-
well equations for transverse field components.’

In our derivation for the reflective LCDs with the
backward-eigenwave method, we will take the coordinate
system shown in Fig. 2. For simplicity, we normalize the
magnetic field H as

H = (ug/ep) ?H. (B1)

Maxwell’s equation can be expressed for E and H in the
following forms:

V x E=ikoH, (B2a)

V X H=-ikyeE. (B2b)

With d/dy=0 and d/ox=ik,, we can expand Eqs. (B2a) and
(B2b) to six equations as

JE

y . S
- —=ikoH,, B3a
P LR ( )
JE, .
ik E,+ — =ikoH,, (B3b)
0z
ik E, =ikoH,, (B3c)
oH

y

- E =" LkO(ExxEx + ExyEy + E"ZEZ)’ (B3d)

" [(haolko)? — eall(kolho)? — €]~ [( ko) koofko) + €T (R fko) (koolko) + €]

A

N |
ik H, + a— = —iko(enEy + €,E, + €,.E,), (B3e)
4

ik H,=—iko(e,E, + yE, + €, E,). (B3

After elimination of the longitudinal components, these
six equations can be written in a matrix representation as

E, E,
a| Ey 7Q E, (B4)
-_— A =1 0 A
| H, H.|
H, H,
where
. 2 0
€ €y sin” 6,
——sin 6, ——sin 6, 0 1-
622 EZZ GZZ
0 0 -1 0
= €, €y €.
= = . 2 A .
— €t €, -€,+€,—+sin“g, O sin 6,
zZZ 622 EZZ
€x €y €xz |
€rx— €Er— €y — € 0 - —sing,
622 EZZ 622
(B5)

From the theory of linear algebra, diagonalizing the Q
matrix to get its eigenvalues and eigenvectors can solve
these coupled equations. This eigensystem can be solved
by many numerical software programs. By this method,
we can express the diagonalized Q matrix as

q1

Q=T T, (B6)

where g; to q4 are the eigenvalues of Q, and T is com-
posed of the corresponding eigenvectors. For simplicity,
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we intentionally adjust the ¢ eigenvalues and the eigen-
vector matrix T in a way such that ¢q; and g4 are positive
and q3,q4 are negative.

With the diagonalized Q matrix, we can further con-
duct a variable transformation of the tangential field com-
ponents as

E, U,
N 7| 2 B7
ﬁ[x - U3 ) ( )
a, Uy
where T is expanded as
_ Ty To . (BS)
Ty Ty
Substituting Eq. (B7) into Eq. (B4), we can obtain
U, q1 U,
| Uy q2 U,
— =ik . (B9)
oz| Us 0 qs Us
U, q4 || Us

Equation (B9) comprises four uncoupled equations in
which U; and U, represent the forward eigenwaves and
U; and U, represent the backward ones. According to Fig.
12, the solutions of Eq. (B9) are

U, U,
U, U,
=G B10
U3 n U3 b ( )
U4 n,d U4 n,0
where
exp(ik,1d,)
Gn _ eXp(ikZZdn) . i
exp(lkZSdn)
exp(ik.4d,)
(B11)
and
k.1=koq1, (B12a)
k.2 ="Fkoqs, (B12b)
Layer n-1
Layer n d,
Layer n+1

Fig. 12. Structure of nth sublayer with thickness d,. Notice
that the bottom of this layer is the (n + 1st) layer.
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k.3 =koqs, (B12¢)

k.y=Fkogy. (B12d)

For the forward eigenwaves, we can correlate the U; and
U, values on the top and bottom surfaces of the nth layer

as
U2 n,d, o U2 n,O,
where
exp(ikzldn) 0
F,= . B14
" |: 0 exp(lkz2dn) ( )

A similar relation for the backward parts Uz and Uy, can
be expressed as

U4 nd, o U4 n,O’
with
exp(ik.sd,) 0
0 exp(lkzzldn)

From Eqs. (B7) and (B8), the corresponding electric
fields can be expressed by the forward (+) and backward

(—) eigenwaves as
Ex Ex Ex N T Ul T U3
E|"|E B, |~ U,
(B17)

+

+

Yy Yy

According to the fact that in conventional LCDs the back-
ward eigenwaves are negligible, from Eq. (B17) we obtain

the further expression:
=~ =T ! B18
Ey 11 4 72 . ( )

Because the x and y field components are continuous on
the interference of a layer, from Eqgs. (B13) and (B18) and
Fig. 12, electric fields between subsequent layers can be
correlated as

E,

E,

{E} J. E"]+ (B19)
Ey n_ o Ey n+1’
where

g, = (T11), Fo(T10);! (B20)

is the transforming matrix for forward tangential-field
components of subsequent layers. Here the layer index is
defined in the same way as shown in Fig. 2. For the neg-
ligible backward field components, a similar relation can
be given as
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= T ’ le
Ey 12 U . ( )

Along with Eq. (B15) and Fig. 12, we can express the
backward tangential-field components between subse-

quent layers by
E. | E. |
Ey n+l Ey n

(Je_,n)_l = (T19),(B,) (T ),

(B22)

where

(B23)

is the transforming matrix. Here we intentionally express
the backward tangential components at layer n+1 by
those at layer n to denote the incident wave in reflective
LCDs.
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