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Abstract: Sidewall emission of a micro-scale light emitting diode (micro-LED) improves the 
light extraction efficiency, but it causes mismatched angular distributions between AlGaInP-
based red micro-LED and InGaN-based blue/green counterparts due to material difference. 
As a result, color shift of RGB micro-LED displays may become visually noticeable. To 
address this issue, we first analyze the angular distributions of RGB micro-LEDs and obtain 
good agreement between simulation and experiment. Next, we propose a device structure 
with top black matrix and taper angle in micro-LEDs, which greatly suppresses the color shift 
while keeping a reasonably high light extraction efficiency. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Micro-scale light emitting diode (micro-LED) is a potentially disruptive display technology 
because of its outstanding features such as high dynamic range, good sunlight readability, 
long lifetime, low power consumption, and wide color gamut [1–3]. To achieve full-color 
displays, two methods are commonly used: 1) color conversion, e.g. using blue (B) or 
ultraviolet (UV) micro-LEDs to pump green (G) and red (R) quantum dots or phosphors [4–
6], and 2) to assemble individual RGB micro-LED pixels from semiconductor wafers to the 
same driving backplane through pick-and-place approach, which is referred to as mass 
transfer process. Although it is still challenging to achieve high manufacturing yield, a large-
size display consisting of full-color micro-LED modules is emerging, such as microdisplays, 
tablets, monitors, TVs, and video walls [7,8]. 

For a micro-LED, as the chip size down to micron scale, although the internal quantum 
efficiency may droop due to increased non-radiative recombination from sidewall defects, its 
light extraction efficiency is improved because the light emission from sidewall gradually 
increases [9–12]. However, the far-field radiation pattern would deviate from ideal 
Lambertian distribution, depending on the sidewall emission intensity, which is determined 
by the refractive index of the employed semiconductor material and device structure. For 
commercial LEDs, the most commonly used epitaxy wafer for red LED is based on 
GaInP/AlGaInP multi-quantum wells (MQWs), while blue and green LEDs are based on 
InGaN/GaN MQWs [13,14]. Therefore, angular distribution mismatch among RGB micro-
LEDs would occur because the red chip uses different epitaxy materials and has different 
structures from the green and blue ones. As a result, the angular color shift of mixed colors, 
such as skin tone, by mixing RGB colors with different ratios may become distinguishable by 
the human eye [15]. 

In this paper, we first analyze the color shift of RGB micro-LED displays originated from 
mismatched angular distribution. Next, we validate our simulation model with experiment, 
and obtain a good agreement. In order to reduce color shift, we propose a device structure 
with top black matrix. By introducing a taper angle in micro-LEDs, the light extraction 
efficiency can be improved simultaneously. 
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2. Simulation model and experiment 

In our analysis, we examine the emission patterns of RGB micro-LEDs at different viewing 
angles with ray-tracing software LightTools. Table 1 lists the commonly used major structure 
layers and their thicknesses of flip-chip RGB chips. For AlGaInP-based red micro-LED, it 
has metal contact layer, n-cladding AlGaInP, n-type AlInP diffusion barrier, GaInP/AlGaInP 
MQWs, p-type AlInP diffusion barrier, p-cladding AlGaInP, and p-GaP window layer [16]. 
For InGaN-based green and blue micro-LEDs, their structures consist of metal contact layer, 
p-type GaN, AlGaN electron block layer, InGaN/GaN MQWs and n-type GaN. Although 
only the refractive indices at central wavelength are included here, during simulations the 
wavelength dispersion of refractive index for each material [17,18] is also considered. The die 
sizes are all 35 × 60 μm in order to be comparable to some commercial products. For 
simplicity, the metal pad is set to be the same size as chip size. Please note that the layout and 
materials for blue and green micro-LED are similar, but they are quite different from those of 
red chip. Light radiation from the multi-quantum wells (MQWs) with uniform angular 
distribution travels through each layer and across interfaces according to Snell’s law. 

Table 1. Optical parameters of commonly used AlGaInP-based red micro-LED and 
InGaN-based blue and green micro-LEDs adopted in simulations. 

Red 
Layers 

Thickness 
(µm) 

n k 
Green/Blue 

Layers 
Thickness 

(µm) 
n k 

Green Blue Green Blue 

ITO 0.1 2.07 0 n-GaN 2.5 2.38 2.43 4e-5 4e-5 

p-GaP 1.0 3.33 0 MQW 0.1 2.41 2.49 2e-2 2e-2 

p-
AlGaInP 

0.1 3.30 0 p-AlGaN 0.05 2.31 2.35 6e-4 7e-4 

p-AlInP 0.6 3.21 0 p-GaN 0.3 2.38 2.43 4e-5 4e-5 

MQW 0.4 3.60 0.16 n/p-Metal 0.5 0.44 1.43 2.29 1.85 

n-AlInP 0.3 3.21 0 - - - - - - 

n-
AlGaInP 

1.2 3.30 0 - - - - - - 

n/p-
Metal 

0.5 0.15 3.52 - - - - - - 

2.2 Emission spectra and angular distributions 

 

Fig. 1. SEM image of RGB micro-LEDs arrays after transfer. 

To validate our model, we fabricated RGB micro-LEDs with the same chip size 35 × 60 µm 
(Fig. 1), and measured the emission spectra of RGB chips from normal direction to 60° 
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Fig. 5. (a) Top view of micro-LED chip with a point-like source located at (x, y). (b, c) Side 
views of light emission from the point source with emission angle θi: (a) θi < θc: top emission; 
(c) θi > 90°−θc: sidewall emissions. 

For the emission towards sidewall, the escape cone may not be completed, depending on 
the position of point-like sources located at the MQW layer. For example, the point source at 
a short distance from sidewall can get a completed escape cone. However, as the distance 
increases, the escape cone will become uncompleted because of the small thickness of micro-
LED chip (< 4 μm). Figure 5(c) shows the side-view of light emissions from the point source 
with angle θi satisfying 90°−θc < θi < 90°. Light within this angle range will escape from the 
sidewall but experience different absorption or reflection losses. For example, when the light 
emission from the point source reaches the top edge of the sidewall without experiencing 
reflection [gray line in Fig. 5(c)], we can obtain a light escape cone θ1 = tan−1(h1/x) without 
absorption and reflection loss. The emission ratio can be calculated using Eqs. (2) and (3). If 
the emission angle θi satisfies 90°−θc < θi < 90°−θ1, although the light can still escape from 
sidewall, it will experience multiple reflections between top and bottom surfaces as well as 
absorption of MQW, which are illustrated by green and orange lines in Fig. 5(c). For the light 
reflected by the bottom surface n times, the sidewall emission ratio can be estimated by 
modifying Eqs. (2) and (3) as: 
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In Eq. (4), α and d represent the absorption coefficient and thickness of MQW layer, and Rs is 
the reflectance of bottom metal pad. For simplicity, we have neglected the Fresnel loss at 
semiconductor/air interface and the refraction between different layers inside micro-LED. 
Thus, the total sidewall emission ratio from four side surfaces can be calculated by adding all 
the ratios together. The calculated results by MATLAB and the simulated data using ray-
tracing in LightTools for micro-LEDs with different chip size are listed in Table 2. The 

x

y

l

w
x

y

(a)

w-y

l-x

x

z
(c)

h1(b)

x

z
θi θc

θc

h2

                                                                                     Vol. 27, No. 12 | 10 Jun 2019 | OPTICS EXPRESS A750 

 



agreement between these two methods is very good. As the chip size shrinks from 50 × 100 
µm2 to 15 × 30 µm2, the sidewall emissions from RGB micro-LEDs increase because of 
lower absorption and reflection losses inside the chip. For red micro-LEDs, the sidewall 
emission ratio is much smaller than that from green and blue ones due to stronger absorption 
of red MQW, resulting in a mismatched angular distribution among RGB micro-LEDs. 

Table 2. Simulated and calculated sidewall emission ratio for a RGB micro-LED display 
with different chip size. 

Chip size 
(μm2) 

Red Green Blue 
Sim. Cal. Sim. Cal. Sim. Cal. 

15 × 30 10.8% 11.0% 58.9% 58.5% 62.2% 65.7% 
35 × 60 5.3% 5.6% 52.4% 54.2% 55.1% 56.7% 
50 × 100 3.8% 4.0% 47.2% 49.6% 50.1% 52.9% 

3.2 Color shift and light efficiency 

To analyze the color shift induced by subpixels’ angular distribution mismatch, a more 
representative way is to calculate the color shifts of the mixed colors by RGB color mixing. 
We have defined 10 reference colors in total in order to evaluate color shift throughout the 
entire color gamut. These reference colors include three primary colors, white point D65, and 
six mixed colors (three 100% saturated colors and three 50% saturated colors), which are 
plotted in CIE 1976 color space [20,21], as shown in Fig. 6. 

 

Fig. 6. 10 reference colors in CIE1976 color space, with D65 white point and RGB micro-
LEDs primary colors. 
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Fig. 7. Simulated color triangle of the RGB micro-LED display system and the CIE 
coordinates of 10 reference colors from 0° to 80° viewing angle. The arrows indicate the color 
shift as viewing angle changes. 

Figure 7 depicts the color triangle of the RGB micro-LED display and CIE coordinates of 
10 reference colors at viewing angles from 0° to 80° with 10° intervals. For primary colors, 
no color shift is observed at fixed driving current due to weak cavity effect inside micro-
LEDs. While for mixed colors and white point, color shift becomes worse as viewing angle 
increases as expected. The average color shift Δµ′ν′ of all colors at 80° is 0.061 and the 
maximum value is 0.169 for magenta channel, which exceeds the just-noticeable level (Δµ′ν′ 
< 0.02). This issue will get worse as the micro-LED size decreases because of increased 
sidewall emissions from green and blue chips, as listed in Table 2. Therefore, it is necessary 
to improve the color performance of RGB micro-LED display system, especially for high 
resolution applications. 

In terms of color gamut, our display device can cover 97% of DCI-P3 standard and 78% 
of Rec. 2020 standard, as indicated by the color triangle in Fig. 7. The relatively narrow color 
gamut coverage results from the spectral crosstalk between green and red chips, as Fig. 8 
shows. Compared to our device, the Osram’s green LED has a slightly shorter central 
wavelength and narrower FWHM. As a result, it has less crosstalk with the red LED and its 
RGB LED system can achieve wider color gamut. The calculated color gamut coverage is 
99% of DCI-P3 standard and 90% of Rec.2020 standard. To achieve a desired color gamut, 
we can tune the electroluminescent (EL) spectrum of green micro-LED by controlling the 
well/barrier width and indium composition of MQWs [22]. 
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Fig. 10. Light intensity enhancement ratio normalized to bare RGB micro-LEDs (90° taper 
angle and without black matrix) as taper angle α changes. 

The simulated color shifts for RGB micro-LED display with top black matrix and 120° 
taper angle is plotted in Fig. 11. The average Δµ′v′ of all 10 reference colors at 80° is 0.005 
and the maximum value is 0.014 for magenta channel, which is below 0.02 and is acceptable 
for commercial applications. Besides these 10 reference colors, we also evaluate the color 
shift using the first 18 colors in Macbeth ColorChecker [26], which is commonly used in 
color tests and reproductions to mimic the colors of natural objects such as human skin, 
foliage and flowers. Figure 12 depicts the simulated results. The color shifts of all 18 
reference colors within 80° viewing cone are below 0.01 and the maximum average Δµ′ν′ is 
0.007, which remains visually unnoticeable by human eye. 

 

Fig. 11. Simulated color shifts of 10 reference colors from 0° to 80° viewing angle for RGB 
micro-LED display with top black matrix and 120° taper angle. 
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asymmetric subpixel arrangement [29] or employing a patterned scattering film on top of the 
display panel to achieve matched angular distributions [30]. Each approach has its own merits 
and demerits. 

In addition to angular color shift caused by angular distribution mismatch, micro-LED 
display may also suffer from color shift originating from spectral shift at different driving 
current densities. Due to the competition between band-filling effects and self-heating-
induced bandgap shrinkage, blueshift at the low current density level and redshift at the high 
current density level have been reported [31,32]. This color shift issue might be addressed by 
image rendering, optimization of epitaxial wafer [33] or driving method, etc. 

4. Conclusion 

We have analyzed the color shift of RGB micro-LED displays due to angular distribution 
mismatch. The simulation model is validated by experiment and a good agreement is 
obtained. In order to mitigate the color shift while keeping a high light extraction efficiency, 
we proposed a device structure with top black matrix and taper angle in micro-LEDs. After 
optimization, the color shift Δu′ν′ of the RGB micro-LED display with 120° taper angle is 
suppressed to below 0.01 within 80° viewing cone for the first 18 reference colors in Macbeth 
ColorCheker, and the efficiency keeps ~85% of the device without black matrix. 
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