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The conical rigorous coupled-wave analysis (RCWA) is employed to calculate the polarization conversion
through the excitation of surface plasmons on metallic gratings. Various examples are examined with this nu-
merical scheme. Our calculated results are consistent with those obtained from experiment and from other
numerical methods. Three types of subwavelength surface-relief gratings are studied for the capability of
broadband polarization conversion in the visible region. For wide-angle applications, various incident angles
are studied and high polarization conversion efficiency is achieved. © 2008 Optical Society of America
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1. INTRODUCTION

Polarization conversion (PC) of incident light by metallic
gratings has been studied extensively. The early experi-
ment of Bryan-Brown and Sambles demonstrated certain
degrees of polarization rotation of the reflected light via
excitation of surface plasmons on a silver-coated grating
[1]. The broken surface symmetry that results in the ro-
tation of the polarization plane is actually due to conical
diffraction with azimuthal angle neither parallel nor nor-
mal to the grating vector [2]. To obtain large conversion
efficiency, it relies on the surface plasmons excited in
high-aspect-ratio metallic gratings. More detailed analy-
sis on such surface plasmon resonance coupled with inci-
dent light of different polarizations can be found in the lit-
erature [3-7].

For a long time, PC by several profiles of metal-stripe
or metallic surface gratings has been discussed only for
monochromatic light. Recently, two respective types of
Gaussian ridge and rectangular surface-relief gratings
that enable broadband polarization conversion (BPC) in
the visible and microwave regions have been reported
[8-10]. Such a BPC optical element would be much appre-
ciated in many optical devices whenever polarization ro-
tation is demanded.

Many researchers have modeled the light with metallic
gratings based on the differential formalism developed by
Chandezon et al. [11], which solves the Maxwell equations
with the technique of straightening grating profiles by
nonorthogonal curvilinear coordinate transformation.
Others have used Yasuura’s method [12,13], a mode-
matching method with finite truncated series, to calculate
the p-s (TM-TE) mode conversion by metallic gratings
and obtained results quite consistent with experiment
[14].

Another common approach is the conical rigorous
coupled-wave analysis (RCWA) proposed by Moharam
et al. [15,16] or the rigorous Fourier modal method sug-
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gested by Li [17], both of which have been successfully
adapted to the design of subwavelength PC gratings
[10,18,19]. In the present work, we will use RCWA to cal-
culate PC including broadband application with highly re-
flective metallic gratings. We have found in this work that
with separation of s and p modes in the choice of reference
coordinate, it is feasible to obtain PC by means of RCWA
calculation.

In previous studies of metallic gratings, although non-
normal incident angles for monochromatic PC have been
discussed, for cases of achromatic wave, only single-
incident-angle light was considered. Here we further in-
vestigate PC with variation of incident angle for applica-
tion to broadband and wide-angle illumination sources.
This wide-angle analysis is practically beneficial, since for
finite sizes of optical waves, such as Gaussian beams, the
propagation of the Fourier wave vectors diverge in differ-
ent propagating directions.

Because the angle is not limited to normal incidence,
we also investigate the maximum PC condition with vari-
ous conical mounting conditions. We show that the opti-
mal azimuthal angle is not necessarily 45°. This numeri-
cal result would extend the optimized azimuthal
condition for shallow gratings reported by Depine and
Lester [20] to deep gratings. Besides the Gaussian ridge
profile proposed in [8], we also discuss two particular
structures of rectangular and trapezoidal gratings that
are capable of converting polarization both over broad
bandwidth and wide incidence angles. In addition, the
shift of the peak PC in the wavelength spectrum with re-
spect to the grating pitch will be illustrated.

Also, in considering a real situation, experimental dis-
persion data of the refractive index of metallic grating in
visible wavelengths are used in our calculation. Although
there are choices of metallic gratings, here only the re-
sults with silver gratings are presented. Moreover, for
control of beam quality and effective rotation of polariza-
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tion, the subwavelength metallic grating is the main sub-
ject we will discuss to ensure the zeroth diffraction order
is the only nonevanescent harmonic that carries the
power flow.

The organization of this paper is as following. In
Section 2, we will review the conical RCWA theory and
show how we calculate the PC. The validity of the appli-
cability of RCWA is confirmed with examples in Section 3,
including several grating profiles for achromatic PC. The
accordingly optimized incidence parameters for broad-
band PC are illustrated with numerical results as well. In
Section 4, we summarize our work and consider possible
future work.

2. MODELING POLARIZATION
CONVERSION BY RIGOROUS COUPLED-
WAVE THEORY

In the modeling of polarization conversion, a detailed
analytical result [21] was given with Rayleigh’s field ex-
pansion in shallow metallic grating. However, it is not ap-
plicable to the present gratings because of the limit of its
small groove depth approximation d <A, where the pitch
A is about the same order of wavelength A. As mentioned
in [8], for broadband polarization conversion, the groove
depth is about one quarter of the wavelength, d =\/4. In
such cases, the excitation and coupling of surface plas-
mons with the incident and diffracted light are quite com-
plicated, and numerical schemes were needed to attain
the solution of diffracted waves.

For calculation of diffraction gratings, there are two
categories classified as differential and integral methods
[22]. In the differential method, in spite of previous Chan-
dezon’s or Yasuura’s results, RCWA has been one of the
most widely used approaches. Although RCWA has been
used to calculate the PC for dielectric and metallic grat-
ings by other researchers, here we will apply RCWA to
highly reflective metallic gratings in separate equivalent
TE and TM boundary conditions and address the conver-
gence formulation as follows.

In early formulations of RCWA for metallic surface-
relief gratings, the problem was encountered of slow con-
vergence in expanding the diffraction orders for the TM
wave [23]. This drawback soon was improved for deep
gratings as suggested by Lalanne and Morris [24], and
Granet and Guizal [25]. However, for shallow gratings,
the classical (Moharam) method proved to have better
convergence performance [26]. Later, to the best of our
knowledge, a convergent scheme suggested by Popov and
Neviére [27] based on Li’s factorization rule [28] has
shown proficiency in fast convergence. However, all the
previously published results were concerned mainly with
the diffraction efficiency, not polarization rotation. In cal-
culating PC by RCWA, the abovementioned schemes still
encounter certain convergence problems in different grat-
ing profiles. This was recently observed by the authors
and a new method was proposed to improve the conver-
gence. Here we adopt this new method to calculate the
conical metallic diffraction, and the results consistent
with experimental and other approaches will be given.

Simply speaking, the nature of polarization conversion
is a consequence of relative phase difference of s and p
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components (fast and slow modes) in highly reflective
gratings [3]. These modes and surface plasmon polaritons
are coupled in a very complicated way to enhance or sup-
press PC, a process that is critically dependent on the
grating structure and orientation. Therefore, in studying
these modes’ interactions with metallic gratings, the
spherical coordinate is preferred in the conical mounting
analysis, to include all the decisive parameters, the
incidents polar and azimuthal angles, and the grating
orientation.

With the above considerations, it is convenient to coor-
dinate the normalized incident field E;,,. of arbitrary unit
wavevector k and polarization u in region I as

E;,.=uexp[—jkon(x sin 6 cos ¢ +y sin Osin ¢ + z cos 6)].

(1)
The unit polarization vector u is
u = (sin ¢ sin ¢ — cos i cos 6 cos $)xX — (sin ¢ cos ¢
+ cos ¢ cos sin @)y + (cos ¥sin 0)z, (2)

where 6 is the polar (incidence) angle, ¢ is the azimuthal
angle, and ¢ is the polarization angle (the angle between
u and j in the incident plane I', where the unit normal
vector i and tangential vector j with respect to I' satisfy
i Xj=k) as illustrated in Fig. 1(a). The grating is in the
x-y plane with the grating vector along x, and the inci-
dence plane I' is determined by the k and z vectors. With
¢=0° or 90° u corresponds to the H or E field that is per-
pendicular to the plane of incidence, respectively.

An advantage of the polarization angle i is that we can
assign the equivalent p (TM) wave as #=0° or the s (TE)
wave as ¥=90°. When #=90° u has x and y components
only, which means the polarization is tangential to the
grating plane. Such decomposition of the equivalent p, s
waves in the reference frame of the incidence plane can
immediately enable us to use the boundary conditions ob-
tained from nonconical cases. More important, it turns
out to be a convenient way to calculate the PC, as shown
later.

Here we will follow Moharam’s staircase approximation
for continuous surface gratings. The normalized reflected
electric (magnetic) field E(H)g in region I (z>0), the
transmitted field E(H)p in region II(z>d), and the
Floquet waves E(H)g in groove region III(d>z>0) of
several slices shown in Fig. 1(b) are designated as

E(H)y= E E(H)g, expl-jlkyx + kyy +k1.2)],  (3)
E(H)y= E E(H)r; expl—jkyx + kyy + ki iz - d)], (4)
EG=Ei S(2); expl—j(kyx + kyy)], (5)

Hg= —j(eo/mg Ulz); expl-j(kyx + kyy)],  (6)

where k;=konysin 6 cos ¢p—i-2m/A and k,

=kgnysin #sin ¢ with diffracted order i and grating pe-
riod A; kg i =[(konyan)?— k2 — k3 ]V? if Im[kyy ;] =0 and
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kI(II),zF—[(konl<ll))2—kzi‘ki’]m if Im[kyay.;]>0 and the
sign of the imaginary part is adopted for evanescent
waves.
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2
(b)
Fig. 1. (a) Configuration of conical diffraction by one-

dimensional surface-relief grating with incident angle 6, azi-
muthal angle ¢, polarization angle ¢, and grating period A. (b)
(1) Three regions of RCWA for light incident from medium I into
medium II with coupled wave in groove region III and the stair-
case approximation for continuous surface-relief gratings, where
Al; is the sum of two segments on each side of slice i. (2) Three
grating profiles that enable broadband Rgs: the Gaussian ridge,
the trapezoidal, and the binary grating. Their corresponding
Rgs()\) are shown in Fig. 6.
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Substituting Eqgs. (5) and (6) into the Maxwell equa-
tions, and matching the tangential fields on each slice of
the gratings, we have the wave equations

KQ.K. -KQK-+I|s

K.Q/K,-1I -K.QK, ||S, -
0 0 U,
0 0 U,

[
where the elements in the dielectric Q, tensor are written
as

Q. 0 0
Q.= 0 ny 0
0 0 Q.

[n2E +nA! 0 0
- 0 E 0 o ®
n’E + n?A!

(=]

The matrices K,, K,, A, and E are notations defined in
[15], where K, is a diagonal matrix with the (z,i) ele-
ment being k,(,);/ko, E is the Toeplitz matrix of the per-
mittivity harmonic components, A=K32C—E, and z'=kgz.
The matrix coefficients n, and n, are the x and z compo-
nents of the normal unit vector n at each slice on the
grating surface satisfying n?+n?=1.

The introduction of the Q, tensor is to improve the con-
vergence, which is different from the formulation in [27].
The Q, tensor proposed by Popov and Neviére according
to Li’s factorization rule contains the elements of Toeplitz
matrices [[nf]], [[n?]], and [[n,n,]]; we will not discuss
this in too much detail here. The construction of each
Toeplitz matrix is described in [27]. Instead of using the
Toeplitz matrix, our n2, n% for each slice i of the grating

profile in the staircase approximation are defined as

J nZ(p)dl;
Al

2 i
n.:—,

Xl AZL

f nZ(p)dl;
HZ_ML'— (9)
= Al ’

where p is the integrated point on the surface segment of
each slice of the grating; n%(p), n%(p) are the squares of
the x and z components of unit vector n(p) normal to the
surface, and Al; [see Fig. 1(b)] is the total length of the
sum of two segments on each side of slice i associated
with its line integral element d/;. This new formulation
will prove its validity by the various examples presented
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in Section 3. Indeed, our convergence scheme is based on
the physics inspired by Rayleigh’s diffraction integral.
The postulation, explanation, and derivation of Eqs. (8)
and (9), together with their convergence performance

dz'2| s,

The Floquet waves U, and U, can be easily obtained by
the eigensolutions of Eq. (7) through coupled wave equa-
tions. Now care in the choices of matching boundary con-
ditions in the upper and lower bounds of groove region is
essential. As indicated earlier, we will use the incidence
plane as a new reference frame by rotating each azi-
muthal angle ¢; of every reflection (transmission) field
E(H)g(r); about the z axis onto it. Here the rotation angle
is ¢;=tan"(k,/k,;). The new reflected and transmitted
electric fields are represented as Eﬁ(T)=Eﬁ(T)’tan’i
+Eg .2 The tangential vectors are Epqp .o .= Eg)t
+Eg(  ;n with the unit vectors t and n, respectively
parallel and perpendicular to the incident plane satisfy-
ing tXn=z. The z components remain the same, i.e.,
Egn)2i=Erm)zi-

The new Eg are related to the old Egr)tan; by

Jtan,i

Euler rotati trix R cosgi SND el
uler rotation matrix R(¢;)= _sind,  cosd; | amely,
Exryi ] Exr(ryi
=[R(¢)] . (11)
|:ER(T)Li ER 1y

To completely match the boundary conditions also re-
quires the rotation of tangential S; and U; waves. This
will result in the coupling of the two components of eigen-
vectors S(U),; and S(U),; in the new boundary equations.
Let us further express the parallel electric fields Eg); in
terms of the respective normal and z-component magnetic
fields (Hg(r),;,Hgr(T):) and the parallel magnetic fields
Hgyry; in terms of the respective normal and z-component
electric fields (Eg(t);,ER(T);) from the Maxwell equations
accordingly as

ko kranzi
Ermii= ¥ | —| —=— |Hrm)Li>
0 \ Ronyy

&0 [ krap -
Hgryi= £/ — Egrm ;- (12)
Mo ko

The absence of the z components E(H)gr).; in Eq. (12) is
due to the zero normal components of wave vectors
kr(r)1i=0 since we are in the incidence-plane reference
frame. As a result, with substitution of Eq. (12) the new
boundary equations of S(U), ,; and E(H)gr); contain only
the normal electric and magnetic fields E(H)gr),;. Solv-
ing these new coupled equations at z=0 and z=d for the
undetermined coefficients of the eigensolutions of
S(U), i, we can then obtain the solution of Hg(t),; and

d? [Sy} _ KyQ;leyny + Ko2c - ny
K.Q.KQ, -KK,
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compared with other methods, will be addressed else-
where [29].

Equation (7) can be further simplified into a set of two
second-order differential equations as

KQXK Q. -K, S
Q1R Ky” y] (10)

KxQ;lexQxx - Qxx Sx ’

[

Eg(r),; from the determined coefficients. Readers can find
the detailed description in [15]. Since no propagation
mode of high plasma frequency exists inside the metal, we
discuss only the reflective propagation waves. In this way,
the reflection diffraction efficiency DEg; is defined as

kI,zi 9 kI,zi/n%
+|Hg i[*Re| ——— |,
kony cos 6 konycos 0

(13)

DEg; = ERJ_i|2Re<

where we take the real part of ky,; for the propagating
modes.

By examining Eq. (13) carefully, we find the advantage
of coordinate decomposition through Eq. (11) and field
substitution through Eq. (12). First, the diffraction effi-
ciency in fact is the normalized total power across the x-y
plane contributed by all polarization amplitudes, which
now are completely represented by E(H)g ;. This is the
result of the choice of reference frame.

Second, by the principle of superposition Eg ; repre-
sents the amplitude of the reflective equivalent-TE wave
component, and Hpy ; represents the amplitude of the re-
flective equivalent-TM wave component. Here we empha-
size again that the equivalent TE or TM waves are de-
fined with respect to the incident plane.

Third, if we choose the normalized incident light to be
TE polarization, i.e., #=90° in Eq. (2), the resultant value
of |Hg, ;|?Re(ky ,;/kon} cos 6) in Eq. (13) is the power car-
ried by the TM component of reflective light in the z di-
rection. This means for an incident TE wave, if we have a
nonzero TM part of the reflective wave, then the polariza-
tion has been rotated. In the case of zero reflective normal
electric field, i.e., Eg ;=0, for TE incident light, then we
have total PC. Here we follow the convention in literature
and designate the normalized polarization-converted
teem in  Eq. (18) as the PC efficiency: R,
=3;|Eg,;|?Re(kyi/kony cos 6) for incident p wave con-
verted into s wave and Rsp=2i|HRLi|2Re(kin/k0n% cos 6)
for incident swave converted into p wave. The ratio be-
tween the converted and original polarization fraction in
Eq. (13) with summation over i can define the degree of
polarization rotation.

One can further verify that the polarization conversion
is due to the broken surface symmetry by Eq. (13). Set the
incident azimuthal angle ¢=0° or 90° for an incident s
light; the resultant p wave is always zero Hy,;=0, i.e.,
when the incident polarization is parallel or normal to the
grating vector, there is no PC. This is the case of nonbro-
ken surface symmetry. And for shallow surface grating,
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d<A, Eq. (13) also gives the correct result that the maxi-
mum PC occurs when the azimuthal angle is at ¢=45°.

Another feature of PC through metallic gratings is the
property of reciprocity [18,21,30]. That is, for the same in-
cident configuration, the conversion efficiency of the
zeroth diffracted order from incident s wave into reflective
p wave is the same as from incident p wave into reflective
s wave; in other words, Rgs=Rgp. We can tell that Eq. (13)
supports this reciprocity relation well, and all the fea-
tures mentioned above will be numerically illustrated in
the next section.

3. NUMERICAL EXAMPLES OF PC WITH
METALLIC GRATINGS

In this section, we show some numerical results of PC
conversion using Eq. (13) implemented with our conver-
gence formulation Egs. (8) and (9). Several important
characteristics of PC will be examined thoroughly. The
first demonstration is the Rgs as a function of 6 for a shal-
low sinusoidal silver grating with fixed ¢=45°, as shown
in Fig. 2. We can see that the maximum ROS=O.089 occurs
at 6=18.08°, which is consistent both with the experimen-
tal and theoretical results given in [2].

Figure 3(a) shows another property: that the maximum
Rgs occurs at ¢=45° and is zero at ¢=0° or 90°, which also
coincides with the result in [2]. Figure 3(b) is the corre-
sponding incident angle #-to-¢ function for the maximum
Rgs(gb, 0) found. Also the square—cross curve shown in
Fig. 3(a) verifies the reciprocity property: It is clear that
the Rgs curve is identical to that of Rgp.

Another nontrivial feature is if we increase the groove
depth d then the maximum Rgs will be greatly enhanced.
This is because a higher-modulated grating receives more
of the normal (to the surface) component of the E field,
which induces more surface charges and generates stron-
ger surface plasmon waves. However, if the depth exceeds
a certain value, the RSS induced by the surface plasmon
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Fig. 2. Rgs of incident angle 6 at azimuthal angle ¢=45° for a
shallow sinusoidal silver grating of e=-16+0.71i, A=800.8 nm,
d=25.2nm, and A=632.8 nm, which is consistent with both the
experimental and theoretical results given in Fig. 2 of [2]. The
maximum R23=0.089 occurs at #=18.08°.
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Fig. 3. (a) Maximum Rgs for various ¢ with the same grating
profile in of Fig. 2. The peak maximum RBS occurs at ¢=45° and
is zero at ¢=0° or 90°, which coincides with the Fig. 3 in [2]. The
conversion efficiency follows the square rule of a sinusoidal func-
tion, R,,,(6, $) xsin? (2¢) [1,21]. The curve of squares for the con-
version from p to s and that of crosses for s to p conversion under
the same incidence conditions clearly coincide. (b) Corresponding
incidence angle 6 to ¢ for the maximum Rgs(qb, 0).

wave may decrease. Here we use RCWA to confirm this ef-
fect as shown in Fig. 4, which is consistent with the ex-
perimental result reported in [1] within the range of
groove depth 0 <d <95 nm. We see that when d =95 nm
the Rgs starts to decrease but rises again at d~110 nm.
Readers should keep in mind that although the depth of
grating increases, the shallow grating condition d <A still
holds. More details regarding the mechanism of maxi-
mum Rgs will be discussed in the following.

In the next example, we use RCWA to recalculate the
broadband Rgs in the visible region with the deep grating
suggested in [8]. As indicated there, the numerical result
of a silver Gaussian-ridge grating of 50nm width
(FWHM), 240 nm height and 250 nm period was shown to
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Fig. 4. Maximum Rgs of the groove depth d ranging from 0 to
150 nm with the same grating profile as Fig. 2, but here
A=842.5nm. The portion of d from 0 to 90 nm in this figure is
consistent with the experimental result in Fig. 4 of [1]. The peak
of Rgs(d)=0.65 occurs at d=95nm; Rgs then starts to decrease,
but 1t rises again at d=110 nm.

have Rgs over 80% in wavelengths from 550 to 800 nm.
The simulation condition is at normal incidence 6=0°
with ¢=45° and the permittivity dispersion of silver is
obtained from polynomial fitting to the experimental data
(no source specified in the reference). Here we use the
same grating profile but with the permittivity dispersion
from [31] to do the calculation.

The result is represented by the solid square curve in
Fig. 5, which is very close to the result shown in Fig. 4 in
[8], with a slight difference in the short wavelength
region. The Rgs()\) in this visible spectrum shows a higher
value in the long wavelength end than in the short.

1.0

0.94 et B gt sy
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Q
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/ ——275
064, ——300
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Fig. 5. Broadband Rgs()\) curves of a silver Gaussian-ridge grat-
ing of 50 nm width (FWHM), 240 nm height, and grating pitch A
varying from 250 nm to 350 nm. The simulation condition is at
normal incidence with ¢=45° and the permittivity dispersion of
silver obtained from polynomial fitting to experimental data. The
peak of RSS()\) is moving toward the center of visible spectrum as
the A increases. The curve of solid squares of A=250 nm is con-
sistent with the result in [8].
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In considering the application to polarizing illumina-
tion devices, such as LCDs [32], it would be favorable if
the peak of Rgs()\) were more centered in the visible spec-
trum. Here we investigate this possibility by slight tuning
of the pitch of the Gaussian-ridge grating with only slight
change in Rgs()\). We see in Fig. 5 that the Rgs()\) peak
moves toward the center of spectrum by gradually in-
creasing the pitch while keeping the same height and
FWHM. However, note that the Rgs()\) will drop off if the
pitch increases too much, say to 350 nm, as indicated by
the curve of crosses in Fig. 5.

Although the Gaussian-ridge-shape grating has mani-
fested high Rgs value, in practice it is not easy to fabricate
such a narrow profile due to its high aspect ratio and need
for precise control of the Gaussian shape. Here we sug-
gest two other specific configurations of grating that also
fulfill the same broadband Rgs performance that was
shown in Fig. 1(b). One is a symmetric trapezoidal grating
of 60 nm top, 70 nm bottom, 124 nm height, and 197 nm
period. The other is a rectangular grating with its width
56 nm, height 110 nm, and period 160 nm. Both preserve
high broadband polarization conversion. For detailed dis-
cussion of achromatic Rgs of rectangular gratings with dif-
ferent aspect ratios and metals, readers can consult [10].
Also, in the case of asymmetric trapezoidal metallic
gratings, the Rgs of monochromatic waves with different
inclination angles is discussed in [33].

With the same incident conditions and permittivity dis-
persion used in Fig. 5, the three broadband Rgs curves of
the above-mentioned grating profiles are shown in Fig. 6.
All of these Rgss are above 80% in wavelengths from near
450 to 650 nm, which demonstrates the high performance
of broadband PC. Here the pitch of a Gaussian-ridge grat-
ing is 310 nm, chosen to be more centered in the visible
spectrum. Another issue is that for wide-angle application
instead of normal incidence, we should explore the broad-
band Rgs with arbitrary polar angle 6.

Before discussing any numerical work, we briefly re-
view here the analysis of the optimized azimuthal condi-
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Fig. 6. Performance of broadband Rgs()\) for the three grating
profiles in Fig. 1(b) with the same simulation conditions as Fig. 5;
the pitch of the Gaussian-ridge grating is A=310nm, chosen to
be more centered in the visible spectrum.
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tion of Rgs. For quite a long time, it has been understood
that in one propagation direction of a surface plasmon
wave, the peak of plasmon resonance occurs at ¢=45°
along one branch of resonance curves for conical diffrac-
tion gratings [2,34]. Later, it was pointed out in [20] that mum R23=0.96% at (0,¢)=(53.75°,66°).

in the same propagation direction of surface plasmon For such shallow gratings, the first branch Rgs follows
wave, there exist two branches of resonance. Both the square rule of a sinusoidal function, Rgs( 0,d)
branches exhibit local maxima of PC. « sin?(2¢), which has been both empirically and analyti-

This is indicated in Figs. 7(a)-7(d) along two R° (6, ¢)

cally proven [1,21]. So it is natural to expect that the
branches of resonance curves calculated by RCWA for maximum Rgs will occur at ¢=45°. However, for deep-

shallow sinusoidal gratings. Again, these figures are con-
sistent with the results reported in [20,21]. In Fig. 7(a),
the first branch is the dominant set with maximum Rgs
=1.74% at (6, ¢$)=(2.7°,45°); the second set has its maxi-
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Fig. 7. (a) Two R’?S(e, ¢) branches of resonance curves for a shallow sinusoidal grating of e=-8.23+0.29;, A=575.27 nm, d=11.5 nm, and
A=632.8 nm. The first branch is the dominant set with maximum RSS: 1.74% at (0, p)=(2.75°,45°), and the second set has its maximum
R =0.96% at (6, $)=(53.75°,66°). (b) The major region of second-branch resonance in (a) within the ¢ range from 60° to 80°. (c) Two

Rps(é’, ¢) branches of resonance curves for the grating profile in Fig. 2. (d) The two Rgs curves with increasing depth d in (c). The curve

of squares is the first resonance branch with (6, $)=(21°,45°), and that of crosses is the second branch with (6, ¢)=(76.5°,74°). The Rgs
of the second branch is larger than that of the first branch when d>0.27A (230 nm).
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groove gratings, the other branch can become dominant
as the groove depth increases. This is shown in Fig. 7(d)
when d >0.27A: the Rgs at ¢=74° in the second branch is
larger than that at ¢=45° in the first branch. We would
emphasize here that with increasing grating depth, other
resonance branches may appear and the maximum Rgs is
not necessarily located in these two branches.

Now, for broadband incident waves we need a high-
aspect-ratio grating with d>A, or at least d=A, to
achieve high Rgs. In this case, the interaction of light and
surface plasmon is even more complicated. The Rgs de-
pends on the details of both how the surface plasmon
wave is coupled into photons (optical modes) and how
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these photons interfere with the diffracted light. The cou-
pling depends critically on the groove configuration, and
these excited optical modes can have self-interferences in-
side the groove and even across to adjacent grooves. One
example is that in a subwavelength grating the surface
plasmon wave forms a standing wave in a narrow groove
[35].

Furthermore, the dispersion of surface plasmon waves
may constitute complex band gap structures [36]. What is
more, the large excitation of surface plasmon light does
not guarantee high Rgs value, for it may destructively in-
terfere with itself, dissipating energy into uncoupled
waves, or undergo extra phase delay that causes the con-
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Fig. 8. (a) Average broadband polarization conversion efficiency R=2s (¢) over 6§ and \ of the trapezoidal grating profile in Fig. 1(b), with

the ¢ ranging from 30° to 60°. The peak ofR=25(¢) is 84.5% at ¢=48°. (b) The R,,,(0,\) diagram of $=48° in (a), which is over 80% in most
regions of (6,\) with the maximum Rgs(30° ,650)=90% and the minimum R28(60° ,450)=38%. (c) Top view of (b).
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verted polarization to rotate an additional 7/2 back to the
original polarization. Thus, Rgs cannot be treated by the
simple two-branch analysis mentioned above. All these
mechanisms will affect the maximum Rgs, especially
when we consider large incidence angle 6. Therefore,
there is no reason to expect the overall optimized
azimuthal angles should occur at ¢=45°.

Here we define a figure of merit, the average PC

efficiency IT?S (¢) over 0 and \ with fixed ¢ as

f J RY(6,\)d6d\

=10 -
R ()= (14)

where A6 and A\ are the integral intervals of polar angle
and wavelength, respectively. Figure 8(a) shows the

T(d)) curve from ¢=30° to ¢=60° for the subwavelength
trapezo1dal grating in Fig. 1(b). As we can see, the maxi-

mum RO (@) is 84.5%, occurring at ¢=48°. Figure 8(b)
1llustrates the R <(6,\) diagrams of ¢=48°, which demon-
strate that the RO <(6,\) can reach over 80% in most of the
range of (6,\), Wlth the maximum value R0 +(30°,650)
=90% and the minimum R28(60° ,450)=38%. Flgure 8(c)
is the top view of Fig. 8(b).

All these numerical results show that it is possible to
have both broad and wide-angle PC with subwavelength
metallic gratings. Moreover, due to the complicated en-
tanglement between the excited surface plasmon wave
and reflected light, we expect these simulations can pro-
vide more information toward theoretical modeling or
fundamental analysis of the optimized conditions for Rgs.

4. SUMMARY

RCWA is widely employed in the community of calcula-
tion of diffraction gratings. In this paper, we demonstrate
again that the conical RCWA can accurately determine
PC through metallic gratings, as the results of various ex-
amples given here are in agreement with those previously
calculated by Chandezon’s method or obtained by experi-
ment. PC depends on the details of plasmons excited on
the metal surface. Since the surface plasmon wave equa-
tion itself is derived from the Maxwell equation [37] and
also satisfies the periodic boundary condition of gratings,
it is natural that RCWA can calculate the total E, H fields
caused by surface plasmon and reflected light. The phe-
nomenon of resonance and absorption can also be treated
by RCWA, because the mutual coupling of many Floquet
waves, including the evanescent modes, are all contained
in the RCWA formulation.

We have investigated three metallic gratings that en-
able the performance of broadband wide-angle PC. The
optimized Rgs with azimuthal angle ¢ is discussed in de-
tail; it is not necessarily at 45° as in the case of normal
incidence. Moreover, the subwavelength grating acts like
a PC mirror, as it satisfies Snell’s law. This characteristic
increases the applicability of such polarization rotating
devices. The reciprocity relation of Rgs makes it
convenient that we can choose the incident light to be
either p- or s-polarized waves.

Vol. 25, No. 6/June 2008/J. Opt. Soc. Am. A 1347

Other grating profiles may be found that have equiva-
lent or better performance not even limited to single-
surface-layer gratings. However, the coupling situation
between the surface plasmons and light inside the grating
groove would be more complicated. This needs more fu-
ture studies, and the required numerical analysis can be
accomplished by RCWA, as we have shown in this paper.
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