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metallic surface-relief gratings by rigorous

coupled-wave analysis

Chang-Ching Tsai* and Shin-Tson Wu

College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA
*Corresponding author: tsaicc@creol.ucf.edu

Received January 8, 2008; revised April 2, 2008; accepted April 2, 2008;
posted April 8, 2008 (Doc. ID 91387); published May 16, 2008

The conical rigorous coupled-wave analysis (RCWA) is employed to calculate the polarization conversion
through the excitation of surface plasmons on metallic gratings. Various examples are examined with this nu-
merical scheme. Our calculated results are consistent with those obtained from experiment and from other
numerical methods. Three types of subwavelength surface-relief gratings are studied for the capability of
broadband polarization conversion in the visible region. For wide-angle applications, various incident angles
are studied and high polarization conversion efficiency is achieved. © 2008 Optical Society of America

OCIS codes: 050.1950, 050.1755, 240.6680, 260.5430.
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. INTRODUCTION
olarization conversion (PC) of incident light by metallic
ratings has been studied extensively. The early experi-
ent of Bryan-Brown and Sambles demonstrated certain

egrees of polarization rotation of the reflected light via
xcitation of surface plasmons on a silver-coated grating
1]. The broken surface symmetry that results in the ro-
ation of the polarization plane is actually due to conical
iffraction with azimuthal angle neither parallel nor nor-
al to the grating vector [2]. To obtain large conversion

fficiency, it relies on the surface plasmons excited in
igh-aspect-ratio metallic gratings. More detailed analy-
is on such surface plasmon resonance coupled with inci-
ent light of different polarizations can be found in the lit-
rature [3–7].

For a long time, PC by several profiles of metal-stripe
r metallic surface gratings has been discussed only for
onochromatic light. Recently, two respective types of
aussian ridge and rectangular surface-relief gratings

hat enable broadband polarization conversion (BPC) in
he visible and microwave regions have been reported
8–10]. Such a BPC optical element would be much appre-
iated in many optical devices whenever polarization ro-
ation is demanded.

Many researchers have modeled the light with metallic
ratings based on the differential formalism developed by
handezon et al. [11], which solves the Maxwell equations
ith the technique of straightening grating profiles by
onorthogonal curvilinear coordinate transformation.
thers have used Yasuura’s method [12,13], a mode-
atching method with finite truncated series, to calculate

he p-s (TM-TE) mode conversion by metallic gratings
nd obtained results quite consistent with experiment
14].

Another common approach is the conical rigorous
oupled-wave analysis (RCWA) proposed by Moharam
t al. [15,16] or the rigorous Fourier modal method sug-
1084-7529/08/061339-10/$15.00 © 2
ested by Li [17], both of which have been successfully
dapted to the design of subwavelength PC gratings
10,18,19]. In the present work, we will use RCWA to cal-
ulate PC including broadband application with highly re-
ective metallic gratings. We have found in this work that
ith separation of s and p modes in the choice of reference

oordinate, it is feasible to obtain PC by means of RCWA
alculation.

In previous studies of metallic gratings, although non-
ormal incident angles for monochromatic PC have been
iscussed, for cases of achromatic wave, only single-
ncident-angle light was considered. Here we further in-
estigate PC with variation of incident angle for applica-
ion to broadband and wide-angle illumination sources.
his wide-angle analysis is practically beneficial, since for
nite sizes of optical waves, such as Gaussian beams, the
ropagation of the Fourier wave vectors diverge in differ-
nt propagating directions.

Because the angle is not limited to normal incidence,
e also investigate the maximum PC condition with vari-
us conical mounting conditions. We show that the opti-
al azimuthal angle is not necessarily 45°. This numeri-

al result would extend the optimized azimuthal
ondition for shallow gratings reported by Depine and
ester [20] to deep gratings. Besides the Gaussian ridge
rofile proposed in [8], we also discuss two particular
tructures of rectangular and trapezoidal gratings that
re capable of converting polarization both over broad
andwidth and wide incidence angles. In addition, the
hift of the peak PC in the wavelength spectrum with re-
pect to the grating pitch will be illustrated.

Also, in considering a real situation, experimental dis-
ersion data of the refractive index of metallic grating in
isible wavelengths are used in our calculation. Although
here are choices of metallic gratings, here only the re-
ults with silver gratings are presented. Moreover, for
ontrol of beam quality and effective rotation of polariza-
008 Optical Society of America
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ion, the subwavelength metallic grating is the main sub-
ect we will discuss to ensure the zeroth diffraction order
s the only nonevanescent harmonic that carries the
ower flow.
The organization of this paper is as following. In

ection 2, we will review the conical RCWA theory and
how how we calculate the PC. The validity of the appli-
ability of RCWA is confirmed with examples in Section 3,
ncluding several grating profiles for achromatic PC. The
ccordingly optimized incidence parameters for broad-
and PC are illustrated with numerical results as well. In
ection 4, we summarize our work and consider possible

uture work.

. MODELING POLARIZATION
ONVERSION BY RIGOROUS COUPLED-
AVE THEORY

n the modeling of polarization conversion, a detailed
nalytical result [21] was given with Rayleigh’s field ex-
ansion in shallow metallic grating. However, it is not ap-
licable to the present gratings because of the limit of its
mall groove depth approximation d��, where the pitch

is about the same order of wavelength �. As mentioned
n [8], for broadband polarization conversion, the groove
epth is about one quarter of the wavelength, d�� /4. In
uch cases, the excitation and coupling of surface plas-
ons with the incident and diffracted light are quite com-

licated, and numerical schemes were needed to attain
he solution of diffracted waves.

For calculation of diffraction gratings, there are two
ategories classified as differential and integral methods
22]. In the differential method, in spite of previous Chan-
ezon’s or Yasuura’s results, RCWA has been one of the
ost widely used approaches. Although RCWA has been
sed to calculate the PC for dielectric and metallic grat-

ngs by other researchers, here we will apply RCWA to
ighly reflective metallic gratings in separate equivalent
E and TM boundary conditions and address the conver-
ence formulation as follows.

In early formulations of RCWA for metallic surface-
elief gratings, the problem was encountered of slow con-
ergence in expanding the diffraction orders for the TM
ave [23]. This drawback soon was improved for deep
ratings as suggested by Lalanne and Morris [24], and
ranet and Guizal [25]. However, for shallow gratings,

he classical (Moharam) method proved to have better
onvergence performance [26]. Later, to the best of our
nowledge, a convergent scheme suggested by Popov and
eviére [27] based on Li’s factorization rule [28] has

hown proficiency in fast convergence. However, all the
reviously published results were concerned mainly with
he diffraction efficiency, not polarization rotation. In cal-
ulating PC by RCWA, the abovementioned schemes still
ncounter certain convergence problems in different grat-
ng profiles. This was recently observed by the authors
nd a new method was proposed to improve the conver-
ence. Here we adopt this new method to calculate the
onical metallic diffraction, and the results consistent
ith experimental and other approaches will be given.
Simply speaking, the nature of polarization conversion

s a consequence of relative phase difference of s and p
omponents (fast and slow modes) in highly reflective
ratings [3]. These modes and surface plasmon polaritons
re coupled in a very complicated way to enhance or sup-
ress PC, a process that is critically dependent on the
rating structure and orientation. Therefore, in studying
hese modes’ interactions with metallic gratings, the
pherical coordinate is preferred in the conical mounting
nalysis, to include all the decisive parameters, the
ncidents polar and azimuthal angles, and the grating
rientation.

With the above considerations, it is convenient to coor-
inate the normalized incident field Einc of arbitrary unit
avevector k and polarization u in region I as

Einc = u exp�− jk0nI�x sin � cos � + y sin � sin � + z cos ���.

�1�

he unit polarization vector u is

u = �sin � sin � − cos � cos � cos ��x − �sin � cos �

+ cos � cos � sin ��y + �cos � sin ��z, �2�

here � is the polar (incidence) angle, � is the azimuthal
ngle, and � is the polarization angle (the angle between

and j in the incident plane �, where the unit normal
ector i and tangential vector j with respect to � satisfy
� j=k) as illustrated in Fig. 1(a). The grating is in the
-y plane with the grating vector along x, and the inci-
ence plane � is determined by the k and z vectors. With
=0° or 90° u corresponds to the H or E field that is per-
endicular to the plane of incidence, respectively.
An advantage of the polarization angle � is that we can

ssign the equivalent p (TM) wave as �=0° or the s (TE)
ave as �=90°. When �=90° u has x and y components
nly, which means the polarization is tangential to the
rating plane. Such decomposition of the equivalent p, s
aves in the reference frame of the incidence plane can

mmediately enable us to use the boundary conditions ob-
ained from nonconical cases. More important, it turns
ut to be a convenient way to calculate the PC, as shown
ater.

Here we will follow Moharam’s staircase approximation
or continuous surface gratings. The normalized reflected
lectric (magnetic) field E�H�R in region I �z	0�, the
ransmitted field E�H�T in region II �z	d�, and the
loquet waves E�H�G in groove region III �d	z	0� of
everal slices shown in Fig. 1(b) are designated as

E�H�R = �
i

E�H�Ri exp�− j�kxix + kyiy + kI,ziz��, �3�

E�H�T = �
i

E�H�Ti exp�− jkxix + kyiy + kII,zi�z − d��, �4�

EG = �
i

S�z�i exp�− j�kxix + kyiy��, �5�

HG = − j�
0/�0��
i

U�z�i exp�− j�kxix + kyiy��, �6�

here kxi=k0nI sin � cos �− i ·2� /� and ky
k0nI sin � sin � with diffracted order i and grating pe-
iod �; k = ��k n �2−k2 −k2 �1/2 if Im�k �0 and
I�II�,zi 0 I�II� xi yi I�II�,zi
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I�II�,zi=−��k0nI�II��2−kxi
2 −kyi

2 �1/2 if Im�kI�II�,zi�	0 and the
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Substituting Eqs. (5) and (6) into the Maxwell equa-
ions, and matching the tangential fields on each slice of

he gratings, we have the wave equations
d

dz��
Sy

Sx

Uy

Ux

� = �
0 0 KyQzz

−1Kx − KyQzz
−1Ky + I

0 0 KxQzz
−1Kx − I − KxQzz

−1Ky

KyKx − Ky
2 + Qxx 0 0

Kx
2 − Qyy − KxKy 0 0

��
Sy

Sx

Uy

Ux

� , �7�
here the elements in the dielectric Q
 tensor are written
s

Q
 = �
Qxx 0 0

0 Qyy 0

0 0 Qzz
�

= �
nz

2E + nx
2A−1 0 0

0 E 0

0 0 nx
2E + nz

2A−1� . �8�

he matrices Kx, Ky, A, and E are notations defined in
15], where Kx�y� is a diagonal matrix with the �i , i� ele-

ent being kx�y�i /k0, E is the Toeplitz matrix of the per-
ittivity harmonic components, A=Kx

2−E, and z�=k0z.
he matrix coefficients nx and nz are the x and z compo-
ents of the normal unit vector n at each slice on the
rating surface satisfying nx

2+nz
2=1.

The introduction of the Q
 tensor is to improve the con-
ergence, which is different from the formulation in [27].
he Q
 tensor proposed by Popov and Neviére according

o Li’s factorization rule contains the elements of Toeplitz
atrices ��nx

2��, ��nz
2��, and ��nxnz��; we will not discuss

his in too much detail here. The construction of each
oeplitz matrix is described in [27]. Instead of using the
oeplitz matrix, our nxi

2 , nzi
2 for each slice i of the grating

rofile in the staircase approximation are defined as

nxi
2 =

	
�li

nx
2�p�dli

�li
,

nzi
2 =

	
�li

nz
2�p�dli

�li
, �9�

here p is the integrated point on the surface segment of
ach slice of the grating; nxi

2 �p�, nzi
2 �p� are the squares of

he x and z components of unit vector n�p� normal to the
urface, and �li [see Fig. 1(b)] is the total length of the
um of two segments on each side of slice i associated
ith its line integral element dli. This new formulation
ill prove its validity by the various examples presented
ig. 1. (a) Configuration of conical diffraction by one-
imensional surface-relief grating with incident angle �, azi-
uthal angle �, polarization angle �, and grating period �. (b)

1) Three regions of RCWA for light incident from medium I into
edium II with coupled wave in groove region III and the stair-

ase approximation for continuous surface-relief gratings, where
li is the sum of two segments on each side of slice i. (2) Three
rating profiles that enable broadband Rps

0 : the Gaussian ridge,
he trapezoidal, and the binary grating. Their corresponding
0 ��� are shown in Fig. 6.
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n Section 3. Indeed, our convergence scheme is based on
he physics inspired by Rayleigh’s diffraction integral.
he postulation, explanation, and derivation of Eqs. (8)

nd (9), together with their convergence performance s
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ompared with other methods, will be addressed else-
here [29].
Equation (7) can be further simplified into a set of two
econd-order differential equations as
d2

dz�2
Sy

Sx
� = 
KyQzz

−1KyQyy + Kx
2 − Qyy KyQzz

−1KxQxx − KxKy

KxQzz
−1KyQyy − KyKx KxQzz

−1KxQxx − Qxx
�
Sy

Sx
� . �10�
he Floquet waves Uy and Ux can be easily obtained by
he eigensolutions of Eq. (7) through coupled wave equa-
ions. Now care in the choices of matching boundary con-
itions in the upper and lower bounds of groove region is
ssential. As indicated earlier, we will use the incidence
lane as a new reference frame by rotating each azi-
uthal angle �i of every reflection (transmission) field
�H�R�T�i about the z axis onto it. Here the rotation angle

s �i=tan−1�ky /kxi�. The new reflected and transmitted
lectric fields are represented as ER�T�� =ER�T�,tan,i�

ER�T�,zi� z. The tangential vectors are ER�T�,tan,i� =ER�T��it
ER�T��in with the unit vectors t and n, respectively
arallel and perpendicular to the incident plane satisfy-
ng t�n=z. The z components remain the same, i.e.,

R�T�,zi� =ER�T�,zi.
The new ER�T�,tan,i� are related to the old ER�T�,tan,i by

uler rotation matrix R��i�= � cos �i sin �i

−sin �i cos �i �. Namely,


 ER�T��i

ER�T��i
� = �R��i��
ER�T�xi

ER�T�yi
� . �11�

o completely match the boundary conditions also re-
uires the rotation of tangential Si and Ui waves. This
ill result in the coupling of the two components of eigen-
ectors S�U�xi and S�U�yi in the new boundary equations.
et us further express the parallel electric fields ER�T��i in

erms of the respective normal and z-component magnetic
elds �HR�T��i ,HR�T�zi� and the parallel magnetic fields
R�T��i in terms of the respective normal and z-component

lectric fields �ER�T��i ,ER�T�zi� from the Maxwell equations
ccordingly as

ER�T��i = ��0


0
� kI�II�,zi

k0nI�II�
2 �HR�T��i,

HR�T��i = ± 
0

�0
�kI�II�,zi

k0
�ER�T��i. �12�

he absence of the z components E�H�R�T�,zi in Eq. (12) is
ue to the zero normal components of wave vectors
R�T��i=0 since we are in the incidence-plane reference
rame. As a result, with substitution of Eq. (12) the new
oundary equations of S�U�x,yi and E�H�R�T�i contain only
he normal electric and magnetic fields E�H�R�T��i. Solv-
ng these new coupled equations at z=0 and z=d for the
ndetermined coefficients of the eigensolutions of
�U� , we can then obtain the solution of H and
R�T��i from the determined coefficients. Readers can find
he detailed description in [15]. Since no propagation
ode of high plasma frequency exists inside the metal, we

iscuss only the reflective propagation waves. In this way,
he reflection diffraction efficiency DERi is defined as

DERi = �ER�i�2Re� kI,zi

k0nI cos �
� + �HR�i�2Re� kI,zi/nI

2

k0nI cos �
� ,

�13�

here we take the real part of kI,zi for the propagating
odes.
By examining Eq. (13) carefully, we find the advantage

f coordinate decomposition through Eq. (11) and field
ubstitution through Eq. (12). First, the diffraction effi-
iency in fact is the normalized total power across the x-y
lane contributed by all polarization amplitudes, which
ow are completely represented by E�H�R�i. This is the
esult of the choice of reference frame.

Second, by the principle of superposition ER�i repre-
ents the amplitude of the reflective equivalent-TE wave
omponent, and HR�i represents the amplitude of the re-
ective equivalent-TM wave component. Here we empha-
ize again that the equivalent TE or TM waves are de-
ned with respect to the incident plane.
Third, if we choose the normalized incident light to be

E polarization, i.e., �=90° in Eq. (2), the resultant value
f �HR�i�2Re�kI,zi /k0nI

3 cos �� in Eq. (13) is the power car-
ied by the TM component of reflective light in the z di-
ection. This means for an incident TE wave, if we have a
onzero TM part of the reflective wave, then the polariza-
ion has been rotated. In the case of zero reflective normal
lectric field, i.e., ER�i=0, for TE incident light, then we
ave total PC. Here we follow the convention in literature
nd designate the normalized polarization-converted
erm in Eq. (13) as the PC efficiency: Rps
�i �ER�i�2Re�kI,zi /k0nI cos �� for incident p wave con-
erted into s wave and Rsp=�i �HR�i�2Re�kI,zi /k0nI

3 cos ��
or incident swave converted into p wave. The ratio be-
ween the converted and original polarization fraction in
q. (13) with summation over i can define the degree of
olarization rotation.
One can further verify that the polarization conversion

s due to the broken surface symmetry by Eq. (13). Set the
ncident azimuthal angle �=0° or 90° for an incident s
ight; the resultant p wave is always zero HR�i=0, i.e.,
hen the incident polarization is parallel or normal to the
rating vector, there is no PC. This is the case of nonbro-
en surface symmetry. And for shallow surface grating,
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��, Eq. (13) also gives the correct result that the maxi-
um PC occurs when the azimuthal angle is at �=45°.
Another feature of PC through metallic gratings is the

roperty of reciprocity [18,21,30]. That is, for the same in-
ident configuration, the conversion efficiency of the
eroth diffracted order from incident s wave into reflective
wave is the same as from incident p wave into reflective
wave; in other words, Rps

0 =Rsp
0 . We can tell that Eq. (13)

upports this reciprocity relation well, and all the fea-
ures mentioned above will be numerically illustrated in
he next section.

. NUMERICAL EXAMPLES OF PC WITH
ETALLIC GRATINGS

n this section, we show some numerical results of PC
onversion using Eq. (13) implemented with our conver-
ence formulation Eqs. (8) and (9). Several important
haracteristics of PC will be examined thoroughly. The
rst demonstration is the Rps

0 as a function of � for a shal-
ow sinusoidal silver grating with fixed �=45°, as shown
n Fig. 2. We can see that the maximum Rps

0 =0.089 occurs
t �=18.08°, which is consistent both with the experimen-
al and theoretical results given in [2].

Figure 3(a) shows another property: that the maximum

ps
0 occurs at �=45° and is zero at �=0° or 90°, which also

oincides with the result in [2]. Figure 3(b) is the corre-
ponding incident angle �-to-� function for the maximum

ps
0 �� ,�� found. Also the square–cross curve shown in
ig. 3(a) verifies the reciprocity property: It is clear that

he Rps
0 curve is identical to that of Rsp

0 .
Another nontrivial feature is if we increase the groove

epth d then the maximum Rps
0 will be greatly enhanced.

his is because a higher-modulated grating receives more
f the normal (to the surface) component of the E field,
hich induces more surface charges and generates stron-
er surface plasmon waves. However, if the depth exceeds
certain value, the Rps

0 induced by the surface plasmon

ig. 2. Rps
0 of incident angle � at azimuthal angle �=45° for a

hallow sinusoidal silver grating of 
=−16+0.71i, �=800.8 nm,
=25.2 nm, and �=632.8 nm, which is consistent with both the
xperimental and theoretical results given in Fig. 2 of [2]. The
aximum R0 =0.089 occurs at �=18.08°.
ps
ave may decrease. Here we use RCWA to confirm this ef-
ect as shown in Fig. 4, which is consistent with the ex-
erimental result reported in [1] within the range of
roove depth 0�d�95 nm. We see that when d�95 nm
he Rps

0 starts to decrease but rises again at d�110 nm.
eaders should keep in mind that although the depth of
rating increases, the shallow grating condition d�� still
olds. More details regarding the mechanism of maxi-
um Rps

0 will be discussed in the following.
In the next example, we use RCWA to recalculate the

roadband Rps
0 in the visible region with the deep grating

uggested in [8]. As indicated there, the numerical result
f a silver Gaussian-ridge grating of 50 nm width
FWHM), 240 nm height and 250 nm period was shown to

ig. 3. (a) Maximum Rps
0 for various � with the same grating

rofile in of Fig. 2. The peak maximum Rps
0 occurs at �=45° and

s zero at �=0° or 90°, which coincides with the Fig. 3 in [2]. The
onversion efficiency follows the square rule of a sinusoidal func-
ion, Rps�� ,���sin2 �2�� [1,21]. The curve of squares for the con-
ersion from p to s and that of crosses for s to p conversion under
he same incidence conditions clearly coincide. (b) Corresponding
ncidence angle � to � for the maximum Rps

0 �� ,��.
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ave Rps
0 over 80% in wavelengths from 550 to 800 nm.

he simulation condition is at normal incidence �=0°
ith �=45°, and the permittivity dispersion of silver is
btained from polynomial fitting to the experimental data
no source specified in the reference). Here we use the
ame grating profile but with the permittivity dispersion
rom [31] to do the calculation.

The result is represented by the solid square curve in
ig. 5, which is very close to the result shown in Fig. 4 in

8], with a slight difference in the short wavelength
egion. The Rps

0 ��� in this visible spectrum shows a higher
alue in the long wavelength end than in the short.

ig. 4. Maximum Rps
0 of the groove depth d ranging from 0 to

50 nm with the same grating profile as Fig. 2, but here
=842.5 nm. The portion of d from 0 to 90 nm in this figure is

onsistent with the experimental result in Fig. 4 of [1]. The peak
f Rps

0 �d�=0.65 occurs at d=95 nm; Rps
0 then starts to decrease,

ut it rises again at d=110 nm.

ig. 5. Broadband Rps
0 ��� curves of a silver Gaussian-ridge grat-

ng of 50 nm width (FWHM), 240 nm height, and grating pitch �
arying from 250 nm to 350 nm. The simulation condition is at
ormal incidence with �=45° and the permittivity dispersion of
ilver obtained from polynomial fitting to experimental data. The
eak of Rps

0 ��� is moving toward the center of visible spectrum as
he � increases. The curve of solid squares of �=250 nm is con-
istent with the result in [8].
In considering the application to polarizing illumina-
ion devices, such as LCDs [32], it would be favorable if
he peak of Rps

0 ��� were more centered in the visible spec-
rum. Here we investigate this possibility by slight tuning
f the pitch of the Gaussian-ridge grating with only slight
hange in Rps

0 ���. We see in Fig. 5 that the Rps
0 ��� peak

oves toward the center of spectrum by gradually in-
reasing the pitch while keeping the same height and
WHM. However, note that the Rps

0 ��� will drop off if the
itch increases too much, say to 350 nm, as indicated by
he curve of crosses in Fig. 5.

Although the Gaussian-ridge-shape grating has mani-
ested high Rps

0 value, in practice it is not easy to fabricate
uch a narrow profile due to its high aspect ratio and need
or precise control of the Gaussian shape. Here we sug-
est two other specific configurations of grating that also
ulfill the same broadband Rps

0 performance that was
hown in Fig. 1(b). One is a symmetric trapezoidal grating
f 60 nm top, 70 nm bottom, 124 nm height, and 197 nm
eriod. The other is a rectangular grating with its width
6 nm, height 110 nm, and period 160 nm. Both preserve
igh broadband polarization conversion. For detailed dis-
ussion of achromatic Rps

0 of rectangular gratings with dif-
erent aspect ratios and metals, readers can consult [10].
lso, in the case of asymmetric trapezoidal metallic
ratings, the Rps

0 of monochromatic waves with different
nclination angles is discussed in [33].

With the same incident conditions and permittivity dis-
ersion used in Fig. 5, the three broadband Rps

0 curves of
he above-mentioned grating profiles are shown in Fig. 6.
ll of these Rps

0 s are above 80% in wavelengths from near
50 to 650 nm, which demonstrates the high performance
f broadband PC. Here the pitch of a Gaussian-ridge grat-
ng is 310 nm, chosen to be more centered in the visible
pectrum. Another issue is that for wide-angle application
nstead of normal incidence, we should explore the broad-
and Rps

0 with arbitrary polar angle �.
Before discussing any numerical work, we briefly re-

iew here the analysis of the optimized azimuthal condi-

ig. 6. Performance of broadband Rps
0 ��� for the three grating

rofiles in Fig. 1(b) with the same simulation conditions as Fig. 5;
he pitch of the Gaussian-ridge grating is �=310 nm, chosen to
e more centered in the visible spectrum.
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ion of Rps
0 . For quite a long time, it has been understood

hat in one propagation direction of a surface plasmon
ave, the peak of plasmon resonance occurs at �=45°
long one branch of resonance curves for conical diffrac-
ion gratings [2,34]. Later, it was pointed out in [20] that
n the same propagation direction of surface plasmon
ave, there exist two branches of resonance. Both
ranches exhibit local maxima of PC.
This is indicated in Figs. 7(a)–7(d) along two Rps

0 �� ,��
ranches of resonance curves calculated by RCWA for
hallow sinusoidal gratings. Again, these figures are con-
istent with the results reported in [20,21]. In Fig. 7(a),
he first branch is the dominant set with maximum Rps

0

1.74% at �� ,��= �2.7° ,45° �; the second set has its maxi-
um Rps

0 =0.96% at �� ,��= �53.75° ,66° �.
For such shallow gratings, the first branch Rps

0 follows
he square rule of a sinusoidal function, Rps

0 �� ,��
sin2�2��, which has been both empirically and analyti-

ally proven [1,21]. So it is natural to expect that the
aximum R0 will occur at �=45°. However, for deep-
ps
ig. 7. (a) Two Rps
0 �� ,�� branches of resonance curves for a shallow sinusoidal grating of 
=−8.23+0.29i, �=575.27 nm, d=11.5 nm, and

=632.8 nm. The first branch is the dominant set with maximum Rps
0 =1.74% at �� ,��= �2.75° ,45° �, and the second set has its maximum

ps
0 =0.96% at �� ,��= �53.75° ,66° �. (b) The major region of second-branch resonance in (a) within the � range from 60° to 80°. (c) Two

ps
0 �� ,�� branches of resonance curves for the grating profile in Fig. 2. (d) The two Rps

0 curves with increasing depth d in (c). The curve
f squares is the first resonance branch with �� ,��= �21° ,45° �, and that of crosses is the second branch with �� ,��= �76.5° ,74° �. The Rps

0

f the second branch is larger than that of the first branch when d	0.27� �230 nm�.
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roove gratings, the other branch can become dominant
s the groove depth increases. This is shown in Fig. 7(d)
hen d	0.27�: the Rps

0 at �=74° in the second branch is
arger than that at �=45° in the first branch. We would
mphasize here that with increasing grating depth, other
esonance branches may appear and the maximum Rps

0 is
ot necessarily located in these two branches.
Now, for broadband incident waves we need a high-

spect-ratio grating with d	�, or at least d��, to
chieve high Rps

0 . In this case, the interaction of light and
urface plasmon is even more complicated. The Rps

0 de-
ends on the details of both how the surface plasmon
ave is coupled into photons (optical modes) and how

ig. 8. (a) Average broadband polarization conversion efficiency
he � ranging from 30° to 60°. The peak of Rps

0���� is 84.5% at �=4
egions of �� ,�� with the maximum R0 �30° ,650�=90% and the m
ps
hese photons interfere with the diffracted light. The cou-
ling depends critically on the groove configuration, and
hese excited optical modes can have self-interferences in-
ide the groove and even across to adjacent grooves. One
xample is that in a subwavelength grating the surface
lasmon wave forms a standing wave in a narrow groove
35].

Furthermore, the dispersion of surface plasmon waves
ay constitute complex band gap structures [36]. What is
ore, the large excitation of surface plasmon light does
ot guarantee high Rps

0 value, for it may destructively in-
erfere with itself, dissipating energy into uncoupled
aves, or undergo extra phase delay that causes the con-

over � and � of the trapezoidal grating profile in Fig. 1(b), with
The Rps�� ,�� diagram of �=48° in (a), which is over 80% in most
m R0 �60° ,450�=38%. (c) Top view of (b).
Rps
0����

8°. (b)
inimu
 ps
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erted polarization to rotate an additional � /2 back to the
riginal polarization. Thus, Rps

0 cannot be treated by the
imple two-branch analysis mentioned above. All these
echanisms will affect the maximum Rps

0 , especially
hen we consider large incidence angle �. Therefore,

here is no reason to expect the overall optimized
zimuthal angles should occur at �=45°.
Here we define a figure of merit, the average PC

fficiency Rps
0���� over � and � with fixed � as

Rps
0���� =

		 Rps
0 ��,��d�d�

����
, �14�

here �� and �� are the integral intervals of polar angle
nd wavelength, respectively. Figure 8(a) shows the

ps
0 ��� curve from �=30° to �=60° for the subwavelength

rapezoidal grating in Fig. 1(b). As we can see, the maxi-
um Rps

0���� is 84.5%, occurring at �=48°. Figure 8(b)
llustrates the Rps

0 �� ,�� diagrams of �=48°, which demon-
trate that the Rps

0 �� ,�� can reach over 80% in most of the
ange of �� ,��, with the maximum value Rps

0 �30° ,650�
90% and the minimum Rps

0 �60° ,450�=38%. Figure 8(c)
s the top view of Fig. 8(b).

All these numerical results show that it is possible to
ave both broad and wide-angle PC with subwavelength
etallic gratings. Moreover, due to the complicated en-

anglement between the excited surface plasmon wave
nd reflected light, we expect these simulations can pro-
ide more information toward theoretical modeling or
undamental analysis of the optimized conditions for Rps

0 .

. SUMMARY
CWA is widely employed in the community of calcula-

ion of diffraction gratings. In this paper, we demonstrate
gain that the conical RCWA can accurately determine
C through metallic gratings, as the results of various ex-
mples given here are in agreement with those previously
alculated by Chandezon’s method or obtained by experi-
ent. PC depends on the details of plasmons excited on

he metal surface. Since the surface plasmon wave equa-
ion itself is derived from the Maxwell equation [37] and
lso satisfies the periodic boundary condition of gratings,
t is natural that RCWA can calculate the total E, H fields
aused by surface plasmon and reflected light. The phe-
omenon of resonance and absorption can also be treated
y RCWA, because the mutual coupling of many Floquet
aves, including the evanescent modes, are all contained

n the RCWA formulation.
We have investigated three metallic gratings that en-

ble the performance of broadband wide-angle PC. The
ptimized Rps

0 with azimuthal angle � is discussed in de-
ail; it is not necessarily at 45° as in the case of normal
ncidence. Moreover, the subwavelength grating acts like
PC mirror, as it satisfies Snell’s law. This characteristic

ncreases the applicability of such polarization rotating
evices. The reciprocity relation of Rps

0 makes it
onvenient that we can choose the incident light to be
ither p- or s-polarized waves.
Other grating profiles may be found that have equiva-
ent or better performance not even limited to single-
urface-layer gratings. However, the coupling situation
etween the surface plasmons and light inside the grating
roove would be more complicated. This needs more fu-
ure studies, and the required numerical analysis can be
ccomplished by RCWA, as we have shown in this paper.
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