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Pretilt Angle Effects on Liquid Crystal
Response Time
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Abstract—Pretilt angle effect on liquid crystal dynamics is ana-
lyzed theoretically. Analytical expressions are derived to describe
liquid crystal response time under nonzero pretilt angle conditions.
The theoretical analysis is confirmed experimentally using verti-
cally aligned liquid crystal cells. This finding quantitatively cor-
relates pretilt angles with liquid crystal response time. This study
improves the understanding of the liquid crystal dynamic process
which is helpful for optimizing liquid crystal response time.

Index Terms—Liquid crystal (LC), pretilt angle, response time.

1. INTRODUCTION

IQUID CRYSTAL (LC) response time plays a crucial role

for display applications. A slow response time causes un-
desirable image blurring and should be avoided. LC response
time is significantly influenced by the surface treatment of the
substrates. A properly prepared substrate will orient the nematic
LC directors in a preferred direction called pretilt angle [1].
Pretilt angle makes an important contribution to the dynamics
of an LC cell [2]. However, detailed theoretical analysis has not
been studied thoroughly.

In this paper, we derive analytical expressions for describing
the LC dynamics including the pretilt angle effect. The analysis
is valid for LC devices with pretilt angles, such as transflective
displays with homogeneous alignment [3], [4] and LCoS dis-
plays with vertical alignment [5]-[7]. To confirm the theoretical
analysis, we prepare several vertically aligned (VA) LC cells
with various pretilt angles and measure their response times. In
our experiments, we find that a large pretilt angle indeed greatly
influences the LC response time. These experimental results are
consistent with our theoretical analyses.

II. THEORY

Fig. 1 shows a VA nematic LC layer sandwiched between two
parallel substrates where z = —d/2 and +d/2 stand for the
bottom and top substrates, respectively. The z-axis is normal to
the plane of the substrates, and the electric field E is along the
z-axis. When the backflow and inertial effects are ignored, the
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Fig. 1. Schematic drawing of a VA LC cell.

Erickson-Leslie equation for describing the dynamics of LC di-
rectors is reduced to the following form [8], [9]:
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In (1), 1 is the LC rotational viscosity, K11 and K33 represent
the splay and bend elastic constants, respectively, e, Ac E? is the
electric field energy density, Ac is the LC dielectric anisotropy,
and 6 is the tilt angle defined as the angle between the z-axis
and the LC directors.

In general, (1) can only be solved numerically. However,
when the tilt angle is small (sinf ~ @) (small angle ap-
proximation) [10] and K33 ~ Kj; (single elastic constant
approximation), the Erickson—Leslie equation is simplified as:
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Equation (2) has following general solution:
0 = [0ssin(Bz) + O, cos(Bz)] - exp(—t/T). 3)

If the VA cells studied have the same top and bottom substrate
treatments, then 6, is found to be 0. At a given voltage, 6,
represents the maximum tilt angle in the center of the LC cell
(0|.=0 = 0 ). If the top and bottom substrates have different
alignment conditions, then 65 # 0 and both terms in (3) have
to be considered. Throughout this paper, for simplicity we as-
sume the pretilt angles on both substrates are symmetric so that
fs = 0.
When the pretilt angle 6, is zero and the anchoring energy is
strong, the following boundary conditions hold:
0,_ =0,=0. 4)
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Equations (3) and (4) lead to the following well-known analyt-
ical solutions for the decay (74) and rise (7;.) times:

Y1 d?
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In (5), 7, is called free relaxation time; i.e., during the decay
process there is no bias voltage, and in (6) the threshold voltage

is defined as
[ K33
Vi, = . 7
th ™ €o|A€| @)

If the pretilt angle departs from zero, then we have:

Os-_ a4 =0,#0. ®)

Equation (3) should satisfy the boundary conditions described
by (8) at Z = —(d/2) and d/2. From (3) and (8), we find the
parameter 3 has following form:

8= %cosf1 (;—p> . ©

Based on (2), we derive the new response time that takes pretilt
angle effect into consideration:

* * Y1
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In most cases, the maximum tilt angle is much larger than the
pretilt angle, i.e., @, > 6. Under such a condition, the cos ()
term in (9) can be approximated as:

0 T 0
-1 (Y P
— |~ = 12
cos < 9m> 570, (12)
and we derive the response time as follows:
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Strictly speaking, the LC threshold voltage Vij, no longer exists
if the pretilt angle is nonzero, although the threshold-like be-
havior in the voltage-dependent transmittance still appears. For
simplicity, let us assume the threshold voltage still exists. Under
such a condition, (14) can be simplified as:

*
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As expected, (13) and (15) are reduced to (5) and (6) when the
pretilt angle is zero. Equations (13) and (15) suggest that the LC
response time is also dependent on #,,, which originates from the

* __
T, =
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Fig. 2. Voltage dependent 6,,,. The LC parameters used for simulations are:
Ae = —4.2, Vi, = 2.19 Vi, K1 = 16.7 pN, and K353 = 18.1 pN.

applied voltage. In [2], it is found that the pretilt angle effect be-
comes more pronounced when V gets close to V;y,. The derived
expressions here confirm the bias voltage effect on LC response
time, since 6, decreases when V' gets smaller.

Fig. 2 shows the simulation results of the voltage dependent
Om- In the Vi, < V' < 4V, region, 6y, increases significantly
when the applied voltage increases and eventually approaches
90° at V' ~ 4V;y,. Pretilt angles also influence 6., especially
when Vis not too far above V.

For an LCD device, the total response time is usually referred
to the sum of rise and decay times. The rise time is strongly
dependent on the applied voltage, and is usually much smaller
than the decay time. With overdriving technique [11], the rise
time can be further reduced. For this reason, the discussion in
this paper will be focused on the LC decay process.

III. EXPERIMENT

To confirm the theoretical analysis, we studied various VA LC
cells which have different pretilt angles. For examples, two VA
cells with the same rubbed polyimide were filled with two dif-
ferent negative LC materials. Both cells have strong anchoring
energy (> 4 x 107* J/m2) [12] so that the anchoring energy
effect on LC response time can be neglected. Their pretilt an-
gles and decay times were measured at room temperature (7" ~
20°C) and A = 633 nm, respectively. It is known that pretilt
angles are dependent on the LC materials even if the alignment
conditions are the same [13], [14]. As a result, their pretilt angle
effects on LC dynamics can still be different.

In experiments, the VA cells sandwiched between two crossed
polarizers are biased at a voltage V3,, which corresponds to the
first transmittance maximum. Under such a condition, the total
phase change is 69 = 7. When the bias voltage is released in-
stantaneously at t = 0, the time-dependent transmittance can be
converted to the transient phase decay described by 6(t) [15]

8(t) = bgexp(—2t/7,) (16)
From (16), 7, can be experimentally extracted from linear fitting
of the time dependent In(6y/6(t)) curve.

In the first experiment, we filled a 6.97 um VA LC cell with
a negative LC material A, which is a modified MLC-6608
mixture from Merck. By numerical fitting of the experimental
data, the pretilt angle was found to be 10.5°. Fig. 3 shows the
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Fig. 3. Voltage dependent transmittance curves of a 6.97 pm VA cell at A =
633 nm. The solid line is the experimental result, and dotted and dashed lines
represent the simulation results for 6, = 0.1° and 10.5°, respectively.
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Fig. 4. Time-dependent In[6 /6(t)] of the 6.97 um VA cell. Dots are exper-
imental data and solid line is the fitting curve. The slope of the straight line is
0.0338/ms, and 7, is found to be ~59 ms.

voltage dependent normalized transmittance of the LC cell at
A = 633 nm and T" ~ 20°C. For comparison, numerically
simulated curves under 10.5° and 0.1° pretilt angles are also
plotted in the figure. A large pretilt angle smears the threshold
behavior and lowers the effective threshold voltage. From
Fig. 3, the maximum transmittance occurs at Vi, = 3.25 Vs,
which corresponds to 69 = =. To measure decay time, we
released the bias voltage and recorded the voltage dependent
transmittance by a LabVIEW system. The transmittance data
were converted to transient phase change as plotted in Fig. 4. A
linear fitting of the experimental data leads to 7, ~ 5942.5 ms.
If the pretilt angle effect is not considered, then 7, is calculated
to be 42 ms based on (5). The measured experimental result
is ~40.5% larger than the theoretical one. The discrepancy is
rather significant. If we use the modified expression (13), the
calculated result is 7, ~ 52 ms, which is ~11.3% lower than
the experimental data. In (13), 6, ~ 68° is obtained from
numerical simulation. By comparing the experimental and two
theoretical results (including and excluding the pretilt angle
effect), we find that the derived theoretical expression (13)
describes the pretilt effect reasonably well. It indicates that the
previously mentioned discrepancy mainly originates from the
pretilt angle effect. Besides pretilt angle, backflow is another
possible mechanism contributing to the discrepancy between
the theoretical and experimental results. However, for a thin

JOURNAL OF DISPLAY TECHNOLOGY, VOL. 3, NO. 3, SEPTEMBER 2007

m
£ 40t .
o
&
30 E
20} O  Experiment |
—— Erickson-Leslie equation
10t = = - Small angle approximation K=K,
- Small angle approximation K=(K11+K33)/2
0 1 1 1 1
0 2 4 6 8 10

Pretilt Angle (ep)

Fig. 5. Pretilt angle 6, dependent LC response time 7,. Solid line represents
the numerical solution of Erickson—Leslie equation [(1)]. The circle is the ex-
perimental result using LC mixture B. Dashed lines are the calculated results
using (13) (I = K33), which employs the small angle and one-elastic constant
approximations. Dotted lines are also calculated from (13) except that K33 is
replaced by ' = ({11 + K33)/2. Cell gap d = 7.10 pm, and bias voltage
b = 3.63 Vims.

VA cell under low voltage operation the backflow effect should
be relatively small.

In the second experiment, we tested a 7.10 pm VA cell, which
has the same surface treatment as the first sample. The cell was
filled with a commercial negative LC mixture B (MCL-6608).
At 20°C, the LC parameters for mixture B are: n, = 1.4748,
ne = 1.5578 at A = 633 nm, Ae = —4.2, v; = 186 mPas,
Ki1 =16.7pN, and K33 = 18.1 pN. Similar to the first exper-
iment, the pretilt angle was found to be 3.5° through fitting. Be-
cause of this smaller pretilt angle, the maximum transmittance
occurs at 3.63 Vs where 69 = . By the same method as the
first experiment, 7y was measured to be 64 £ 4 ms. Theoretical
calculation based on (5) gives 7, ~ 52 ms and the discrepancy is
~23%. When the 3.5° pretilt angle is taken into consideration,
T, is calculated to be 56 ms from (13), which is closer to the ex-
perimental result. Several other VA cells with various negative
LC materials were also tested, and their pretilt angles are usu-
ally small (< 2°). Under this circumstance, the effect of pretilt
angle on the LC response time is insignificant. This result is also
consistent with our theoretical analysis.

Numerical simulation based on finite-element method (FEM)
is employed to solve (1), which avoids the “one-constant ap-
proximation” and “small-angle approximation” used in the the-
oretical analyses. In Fig. 5, the simulation results confirm that
T, increases as pretilt angle 6, gets larger, which is consistent
with our theoretical analysis. Based on (13), two curves em-
ploying different elastic constant values, K = K33 and K =
(K11 + K33)/2, are also plotted. To deal the dynamics of VA
cells, K = K33 is usually used, but here the analytical results
employing K = (K11+K33)/2 is closer to the simulated curve.
In (1), K ~ Kjs is accurate only when 6 is small. In a high
voltage state, the LC directors tilt angle becomes relatively large
so that the K11 term is pronounced. Thus, it seems more reason-
able to take K11 into account and assume K ~ (K11 + K33)/2.

The discrepancy between the simulation and analytical re-
sults are mainly because of the single elastic constant (K33 =
K1) and small angle approximations. In the small pretilt angle
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region (0, < 2°), the difference is less than 11%. As 6, in-
creases, the discrepancy slightly increases. The result in our
second experiment is represented by the circle in Fig. 5, and
it agrees with the simulation and theoretical results reasonably
well.

IV. CONCLUSION

Pretilt angle is found to strongly influence the LC dynamics.
Our theoretical analysis is confirmed by experimental and nu-
merical simulation results. This finding improves the under-
standing of the LC dynamics. By optimizing the surface treat-
ment and pretilt angle, LC response time can be improved.
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