Design Optimization of Broadband Linear Polarization Converter Using Twisted Nematic Liquid Crystal

Thomas X. WU, Yuhua HUANG¹ and Shin-Tson WU¹

School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida 32816, U.S.A. ¹School of Optics/CREOL, University of Central Florida, Orlando, Florida 32816, U.S.A.

(Received November 6, 2002; accepted for publication November 19, 2002)

An optimization method was developed for improving the designs of broadband linear polarization converters using a twisted nematic liquid crystal film and two uniaxial compensation films. As compared to the Poincaré Sphere approach, our optimization method takes the material dispersions into consideration and results in a broader bandwidth. Such a broadband half-wave film is particularly useful for enhancing the light efficiency of liquid crystal display devices. [DOI: 10.1143/JJAP.42.L39]

KEYWORDS: polarization converter, twisted liquid crystal film, optimization method, Jones matrix, Poincaré Sphere

Most liquid crystal display (LCD) devices require using linearly polarized light. However, the backlights developed for direct-view displays and arc lamps for projection displays are unpolarized. To convert an unpolarized backlight into linear polarization, a broadband reflective polarizer in conjunction with an achromatic quarter-wave film was proposed.^{1,2)} While for projection displays, a polarizing beam splitter array together with a broadband half-wave film was demonstrated.³⁾ The general requirements of such a polarization converter are broad bandwidth, thinness, light weight, and low cost.

The 90° twisted-nematic (TN) cell can serve as a broadband linear polarization converter (LPC).⁴⁾ The input linearly polarized light follows the molecular twist when the TN cell satisfies one of the following two criteria: the Mauguin limit ($\lambda \ll \Delta nd$)⁵⁾ or the Gooch-Tarry first minimum condition.⁶⁾ To satisfy the Mauguin limit requires a relatively thick LC layer. Especially, when a small birefringence polymeric film is considered, the required film is too thick to be conveniently fabricated. On the other hand, the Gooch-Tarry first minimum condition works only for a single wavelength. It is highly desirable to develop an achromatic linear polarization converter that can cover the entire visible wavelengths.

Recently, a linear polarization converter consisting of three liquid-crystal cells (two homogeneous cells and one twisted nematic (TN) cell) has been designed based on the Poincaré Sphere (PS) method.⁷⁾ Results are encouraging except that the bandwidth is inadequate.

In this letter, we describe a new method for optimizing the design of a linear polarization converter. In principle, the LPC can rotate the incoming linearly polarized light to a specifically designed angle, *e.g.*, 45° , 90° , etc. The most commonly used LPC is a half-wave plate. In this paper, we demonstrated a broadband half-wave plate using a TN cell and two uniaxial polymeric films as an example. By the same token, we could design an LPC with a specific rotation angle.

Figure 1 shows the device configuration of a broadband linear polarization converter. For the purpose of illustrating the calculation procedures, we used a twisted nematic cell sandwiched between two uniaxial compensation films. For

Cell Configuration

Relative Angle

Fig. 1. Device configuration and orientation angles of the linear polarization converter.

practical applications, the LC cell should be replaced by a twisted LC polymeric film. These three films can be laminated together to form a compact and light weight half-wave plate. In our coordinate system, we define the rear rubbing direction of the TN cell as 0°. The incident linearly polarized light is at angle β and the device is designed to convert *p*-polarization to *s*-polarization or vice versa, which means that the polarization will be rotated by $\theta = \pi/2$, or the polarization of the output light is in the $\gamma = \beta + \pi/2$ direction. The TN cell has a twist angle ϕ . The optical axes of the two uniaxial polymer films are oriented at angles α_1 and α_2 , respectively. The LC cell gap is assumed to be *d* and the thickness of the two films is d_1 and d_2 , respectively.

In our simulations, we only calculated the normalized transmittance of the LPC; all the absorption and reflection losses from polarizer and substrates were ignored. The normalized transmittance for the linearly polarization component at an angle $\gamma = \beta + \pi/2$ can be obtained from the Jones matrix as:

$$T = \left| \begin{bmatrix} \cos \gamma & \sin \gamma \end{bmatrix} M_{\text{film } 2} M_{\text{LC}} M_{\text{film } 1} \begin{bmatrix} \cos \beta \\ \sin \beta \end{bmatrix} \right|^2 \qquad (1)$$

where

Jpn. J. Appl. Phys. Vol. 42 (2003) Pt. 2, No. 1A/B

$$M_{\rm LC} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos X - i(\Gamma/2)(\sin X/X) & \phi(\sin X/X) \\ -\phi(\sin X/X) & \cos X + i(\Gamma/2)(\sin X/X) \end{bmatrix}$$
$$M_{\rm film 1} = \begin{bmatrix} \cos \alpha_1 & -\sin \alpha_1 \\ \sin \alpha_1 & \cos \alpha_1 \end{bmatrix} \begin{bmatrix} \exp(-i\pi d_1 \Delta n_{\rm film}/\lambda) & 0 \\ 0 & \exp(i\pi d_1 \Delta n_{\rm film}/\lambda) \end{bmatrix} \begin{bmatrix} \cos \alpha_1 & \sin \alpha_1 \\ -\sin \alpha_1 & \cos \alpha_1 \end{bmatrix}$$
$$M_{\rm film 2} = \begin{bmatrix} \cos \alpha_2 & -\sin \alpha_2 \\ \sin \alpha_2 & \cos \alpha_2 \end{bmatrix} \begin{bmatrix} \exp(-i\pi d_2 \Delta n_{\rm film}/\lambda) & 0 \\ 0 & \exp(i\pi d_2 \Delta n_{\rm film}/\lambda) \end{bmatrix} \begin{bmatrix} \cos \alpha_2 & \sin \alpha_2 \\ -\sin \alpha_2 & \cos \alpha_2 \end{bmatrix}$$

Here, $X = \sqrt{\phi^2 + (\Gamma/2)^2}$ and $\Gamma = 2\pi d\Delta n/\lambda$. In our design, we have taken the LC and polymer material dispersions into consideration.⁸⁾

$$\Delta n = G \frac{\lambda^2 \cdot \lambda^{*2}}{\lambda^2 - \lambda^{*2}} \tag{2}$$

In eq. (2), G is a proportionality constant and λ^* is a mean resonant wavelength. To ensure a better phase matching between LC and polymeric films, similar molecular structures are recommended. A similar molecular structure leads to a similar λ^* so that the wavelength dispersion effect is compensated.⁹⁾ For an LC and polymer containing a phenyl ring, their λ^* is in the vicinity of 210 nm. Let us assume that the LC employed has $\Delta n \sim 0.2$ at $\lambda = 600$ nm for liquid crystal and 0.033 for the polymer films. Thus, $G \sim 3.98 \times 10^{-6}$ nm⁻² and 0.663 $\times 10^{-6}$ nm⁻² for the LC and polymer film, respectively. In the optimization method, the cost function is taken to be:

$$Cost = -\int_{400 \text{ nm}}^{700 \text{ nm}} T(\lambda) d\lambda$$
 (3)

which is minimized in search of β , α_1 , α_2 , d, d_1 and d_2 . The twist angle ϕ may be either fixed (such as specify $\phi = \pi/2$) or searched. The optimization method used in this work is known as the conjugate gradient method.¹⁰

Figure 2 shows the simulation results for a 90° polarization rotator. This device is particularly important for display applications because it changes a *p*-polarization to *s* or vice versa. We obtain excellent results over the entire visible range. The optimal twist angle of the TN cell is found to be $\phi = 83.41^{\circ}$ and cell gap $d = 5.825 \,\mu\text{m}$. The incident wave is linearly polarized at $\beta = 9.18^{\circ}$ and the angles [α_1, α_2] and film thicknesses [d_1, d_2] for the compensation film-1 and film-2 are [$85.6^{\circ}, -90.5^{\circ}$] and [$2.48 \,\mu\text{m}, 4.96 \,\mu\text{m}$], respectively. From Figs. 2(a) and 2(b), a small variation in cell gap ($\pm 0.1 \,\mu\text{m}$) and twist angle ($\pm 1^{\circ}$) does not make any significant change in the performance of the rotator.

Figures 3(a) and 3(b) plot the thickness tolerance of films 1 and 2 for the 90° rotator, respectively. Again, the thickness tolerance of the two uniaxial films is quite acceptable.

To demonstrate the superiority of the 90° polarization rotator, we compared its optical transmission with the 90° TN LC cell between a pair of crossed polarizers and the device designed from the PS model.⁷⁾ Results are shown in Figs. 4 and 5, respectively.

Figure 4 compares our results (gray lines) to those of 90° TN LC cells with $d\Delta n = 5\lambda$, 10 λ , and 20 λ . In all circumstances, the transmission oscillates with the wavelength. For the case of $d\Delta n = 5\lambda$, the transmittance oscillates slowly but produces a large amplitude variation

Fig. 2. (a) Cell gap tolerance of the 90° linear polarization rotator. Solid lines are for $d = 5.825 \,\mu\text{m}$, dashed lines for $d = 5.9 \,\mu\text{m}$ and dots for $d = 5.7 \,\mu\text{m}$. The rest parameters are the same: $\phi = 83.41^{\circ}$, $\beta = 9.18^{\circ}$, $\alpha_1 = 85.59^{\circ}$, $\alpha_2 = -90.52^{\circ}$, $d_1 = 2.48 \,\mu\text{m}$ and $d_2 = 4.96 \,\mu\text{m}$. (b) Twist angle tolerance of the 90° linear polarization rotator. Solid lines are for $\phi = 83.41^{\circ}$, dashed lines for $\phi = 84.41^{\circ}$ and dots for $\phi = 82.41^{\circ}$. The rest parameters are the same: $\beta = 9.18^{\circ}$, $\alpha_1 = 85.59^{\circ}$, $\alpha_2 = -90.52^{\circ}$, $d = 5.83 \,\mu\text{m}$, $d_1 = 2.48 \,\mu\text{m}$ and $d_2 = 4.96 \,\mu\text{m}$.

as the wavelength changes. This indicates that the polarization rotation effect is very sensitive to wavelength, i.e., the Mauguin limit $(d\Delta n \gg \lambda)$ is not satisfied. For the 90° TN cell with $d\Delta n = 10\lambda$, its result (dark solid line in Fig. 4) is comparable to, but still worse than ours at the longer wavelength region. As the $d\Delta n$ value increases to 20λ (dashed lines), the Mauguin limit is finally satisfied and the results are excellent. For a polymer film with $\Delta n \sim 0.03$, in order to satisfy $d\Delta n \sim 20\lambda$ in the visible region (say $\lambda \sim 550$ nm) the required film thickness is $367 \,\mu$ m. Such a thick twisted polymer film is difficult to manufacture. Therefore, our three film approach still has its technical

Fig. 3. (a) Thickness tolerance of compensation film-1. Solid lines are for d₁ = 2.48 μm, dashed lines for 2.58 μm and dots for 2.38 μm. The rest parameters are the same: φ = 83.41°, β = 9.18°, α₁ = 85.59°, α₂ = -90.52°, d = 5.83 μm and d₂ = 4.96 μm. (b) Thickness tolerance for film-2. Solid lines: d₂ = 4.96 μm, dashed lines: 5.06 μm, and dots: 4.86 μm. The rest parameters are the same: φ = 83.41°, β = 9.18°, α₁ = 85.59°, α₂ = -90.52°, d = 5.83 μm and d₁ = 2.48 μm.

Fig. 4. Normalized transmission spectrum of a single 90° TN LC cell with different cell gap between crossed polarizers. Black dashed line: $d\Delta n = 5\lambda$, black solid line: $d\Delta n = 10\lambda$, black dot line: $d\Delta n = 20\lambda$, and grey solid line: the present design.

merit.

Figure 5 compares our results with those obtained from the Poincaré Sphere model. The parameters used in the PS model are: LC birefringence $\Delta n = 0.2$, the thickness of the 90° TN cell $d = 1.9 \,\mu\text{m}$ and $\beta = 0^\circ$, and the two polymer

Fig. 5. Normalized transmission spectrum for a device obtained by the Jones method (solid line) and by the Poincaré Sphere method (dashed line).

films are oriented at -45° and 135° , respectively. According to the PS model, the phase retardations δ of the two films are identical and can be obtained from the following equation:

$$\tan \delta = \frac{2\lambda}{\Delta np} \tag{4}$$

where λ is the wavelength, Δn is LC birefringence and $p = 2\pi d/\phi$ is the pitch, d and ϕ are LC cell gap and twist angle (here $\phi = \pi/2$), respectively. The thickness d_{film} of the two compensation films is calculated to be 1.93 µm with the use of eq. (4) and $\delta = 2\pi \Delta n_{\text{film}} d_{\text{film}} / \lambda$; here Δn_{film} is the birefringence of the two films. Figure 5 compares our results (solid lines) with those obtained from the PS model (dashed lines). Our design exhibits a wider bandwidth than that using PS method, especially in the short and long wavelength regimes.

In conclusion, we have demonstrated a novel design method for optimizing the device structure of a broadband linear polarization converter using a TN LC polymer film and two uniaxial compensation films. Our results show a wider bandwidth than that designed from the Poincaré Sphere method.

This project is supported by AFOSR under contract No. F49620-01-1-0377. The authors are grateful to Dr. Xinyu Zhu for technical discussions.

- S. V. Belayev, M. Schadt, M. I. Barnik, J. Funfschilling, N. V. Malimoneko and K. Schmitt: Jpn. J. Appl. Phys. 29 (1990) L634.
- D. Coates, M. J. Goulding, S. Greenfield, J. M. W. Hammer, S. A. Marden and O. L. Parri: SID Dig. Application Papers 27 (1996) 67.
- Y. Itoh, J. I. Nakamura, K. Yoneno, H. Kamakura and N. Okamoto: SID Tech. Dig. 28 (1997) 993.
- 4) M. Schadt and W. Helfrich: Appl. Phys. Lett. 18 (1971) 127.
- 5) M. C. Mauguin: Bull. Soc. Fr. Mineral 34 (1911) 71.
- 6) C. H. Gooch and H. A. Tarry: J. Phys. D 8 (1975) 1575.
- 7) Z. Zhuang, Y. Kim and J. S. Patel: Appl. Phys. Lett. 76 (2000) 3995.
- 8) S. T. Wu: Phys. Rev. A **33** (1986) 1270.
- S. T. Wu and D. K. Yang: *Reflective Liquid Crystal Displays* (Wiley, New York, 2001).
- O. Axelsson: *Iterative Solution Methods* (Cambridge University Press, New York, 1996).